Abstract

The effects of pump-beam temporal structure in a Raman amplifier were studied by using a frequency-doubled Nd:YAG laser. The experiment demonstrated that the Stokes wave becomes correlated with the pump as it is amplified. This leads to the result that, in general, the amplified Stokes wave is not coherent with the incident Stokes wave. The implications of this result for multiple-beam Raman amplifiers are discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 358 (1979).
    [CrossRef]
  2. M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broadband lasers,” Phys. Rev. A 19, 2304 (1979).
    [CrossRef]
  3. J. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850 (1980).
    [CrossRef]
  4. E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4 (1980).
    [CrossRef] [PubMed]
  5. J. R. Ackerhalt, N. A. Kurnit, “Phase pulling effects in Raman amplifiers,” J. Opt. Soc. Am. A 2(13), P13 (1985).
  6. K. J. Druhl, “Limitations on Stokes beam coherence for broadband pumping,” J. Opt. Soc. Am. A 2(13), P14 (1985).

1985 (2)

J. R. Ackerhalt, N. A. Kurnit, “Phase pulling effects in Raman amplifiers,” J. Opt. Soc. Am. A 2(13), P13 (1985).

K. J. Druhl, “Limitations on Stokes beam coherence for broadband pumping,” J. Opt. Soc. Am. A 2(13), P14 (1985).

1980 (2)

J. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850 (1980).
[CrossRef]

E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4 (1980).
[CrossRef] [PubMed]

1979 (2)

H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 358 (1979).
[CrossRef]

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broadband lasers,” Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Ackerhalt, J. R.

J. R. Ackerhalt, N. A. Kurnit, “Phase pulling effects in Raman amplifiers,” J. Opt. Soc. Am. A 2(13), P13 (1985).

Byer, R. L.

J. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850 (1980).
[CrossRef]

Carlsten, J. L.

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broadband lasers,” Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Druhl, K. J.

K. J. Druhl, “Limitations on Stokes beam coherence for broadband pumping,” J. Opt. Soc. Am. A 2(13), P14 (1985).

Eggleston, J.

J. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850 (1980).
[CrossRef]

Komine, H.

E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4 (1980).
[CrossRef] [PubMed]

H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 358 (1979).
[CrossRef]

Kurnit, N. A.

J. R. Ackerhalt, N. A. Kurnit, “Phase pulling effects in Raman amplifiers,” J. Opt. Soc. Am. A 2(13), P13 (1985).

Long, W. H.

Mostowski, J.

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broadband lasers,” Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Raymer, M. G.

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broadband lasers,” Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Stappaerts, E. A.

E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4 (1980).
[CrossRef] [PubMed]

H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 358 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850 (1980).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. R. Ackerhalt, N. A. Kurnit, “Phase pulling effects in Raman amplifiers,” J. Opt. Soc. Am. A 2(13), P13 (1985).

K. J. Druhl, “Limitations on Stokes beam coherence for broadband pumping,” J. Opt. Soc. Am. A 2(13), P14 (1985).

Opt. Lett. (2)

E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4 (1980).
[CrossRef] [PubMed]

H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 358 (1979).
[CrossRef]

Phys. Rev. A (1)

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broadband lasers,” Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Raman beam-combination schematic.

Fig. 2
Fig. 2

Beam-splitting apparatus. 1, Prism motion in this direction varies the optical delay between the two beams; 2, prism motion in this direction varies the separation between the two beams; 3, mirror rotation changes the angle between the two beams.

Fig. 3
Fig. 3

Laser temporal waveforms show significant depletion; this implies saturated gain.

Fig. 4
Fig. 4

Single-beam Mach–Zehnder interferograms.

Fig. 5
Fig. 5

Raman combination of parallel pump beams. a, Interferogram of Stokes seed with amplified Stokes generated by mutually incoherent pump beams; b, interferogram of Stokes seed with amplified Stokes generated by mutually coherent pump beams resulting in continuous fringes.

Fig. 6
Fig. 6

Off-axis-pumped Raman amplifier. Pump beam must be coherent across the Stokes-beam wave front to preserve Stokes-beam spatial coherence.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 2 E p ( z , t ) exp [ i ( ω p t k p t ) ] + c . c .
1 2 E s ( z , t ) exp [ i ( ω s t k s z ) ] + c . c .
β = | n E p n E * s n | 2 n | E p n | 2 | E s n | 2 .
β z = 1 2 g 0 ( n | E p n | 2 ω p ω s n | E s n | 2 ) ( β β 2 ) .
V = | n E 1 n E * 2 n | 1 2 ( n | E 1 n | 2 + | E 2 n | 2 ) .
V = I max I min I max + I min ,
V c = 2 I 1 I 2 I 1 + I 2 ,
V 2 V c 2 = | n E 1 n E * 2 n | 2 4 I 1 I 2 .
β = sin 2 ( π z / l ) N 2 sin 2 ( π z / l N ) .
x = d tan σ / 2 ,

Metrics