Abstract

The theory of forward Raman amplifiers is developed by considering both monochromatic and broadband pump waves. The effects of dispersion are studied. The cases of a small angle between pump and Stokes beams and multibeam pumping in a light guide are also treated. The growth of amplified spontaneous Raman scattering and higher-order Stokes and anti-Stokes components are considered. As a result of these studies, we conclude that a high-power forward Raman amplifier employing low-pressure gases in a light guide can be designed to operate efficiently with a stage gain of the order of 103. As an application, we present a design of a Raman amplifier that will be used as a beam combiner in an optical-multiplexer pulse-compression system for a high-power KrF laser. We also present some practical considerations that should be taken into account when this kind of system is designed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Kruer, “Laser-plasma coupling in reactor sized targets,” Comments Mod. Phys. E. 6, 167–175 (1981).
  2. C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
    [Crossref]
  3. Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
    [Crossref]
  4. F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
    [Crossref]
  5. M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
    [Crossref]
  6. M. J. Shaw, “The bi-directional amplifier in the constant intensity approximation and its application to KrF lasers,” Appl. Phys. B 30, 5–10 (1983).
    [Crossref]
  7. S. Szatmari and F. P. Schafer, “Picosecond gain dynamics of KrF*,” Appl. Phys. B 33, 219–223 (1984).
    [Crossref]
  8. G. W. York, S. J. Czuchlewski, L. A. Rosocha, and E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.
  9. J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
    [Crossref]
  10. J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
    [Crossref]
  11. R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
    [Crossref]
  12. N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
    [Crossref]
  13. N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1981), pp. 819–827.
  14. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [Crossref]
  15. J. Goldhar, M. W. Taylor, and J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).
  16. M. J. Damzen and M. H. R. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. QE-19, 7–14 (1983).
    [Crossref]
  17. R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
    [Crossref]
  18. M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986).
    [Crossref]
  19. W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
    [Crossref]
  20. Textbooks of nonlinear optics such as those by R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969) and Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  21. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
    [Crossref]
  22. G. Placzek, “Rayleigh and Raman scattering,” in Handbuch der Radiologie, E. Marx ed. (Akademische Verlagsgesellschaft, Leipzig, 1934), p. 205.
  23. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 50–51.
  24. A. Z. Grasyuk, “Raman lasers (review),” Sov. J. Quantum Electron. 4, 269–282 (1974).
    [Crossref]
  25. M. G. Raymer, J. Mostowski, and J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
    [Crossref]
  26. S. A. Akhmanov, Yu. E. Dyakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).
  27. J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980).
    [Crossref]
  28. I. G. Zubarev and S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
    [Crossref]
  29. G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).
  30. G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
    [Crossref]
  31. M. G. Raymer and L. A. Westling, “Quantum theory of Stokes generation with a multimode laser,” J. Opt. Soc. Am. B 2, 1417–1421 (1985).
    [Crossref]
  32. E. A. Stappaerts, W. H. Long, and H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4–6 (1980).
    [Crossref] [PubMed]
  33. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
    [Crossref]
  34. C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
    [Crossref]
  35. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.
  36. J. Goldhar and J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
    [Crossref]
  37. Landolt–Boernstein, Zahlenwarte und Functionen aus Physik, Chemie, Astronomie, Geophysik und Technik, II Band, 8. Teil. Optische Konstanten (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962).
  38. R. S. F. Chang and N. Djeu, “Amplification of a diffraction limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139–141 (1983).
    [Crossref] [PubMed]
  39. R. T. V. Kung and J. H. Hammond, “Phase front reproduction in Raman conversion,” IEEE J. Quantum Electron. QE-18, 1306–1310 (1982).
    [Crossref]
  40. G. C. Valley, “Transfer of pump spatial variations to Stokes phase in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 1370–1375 (1982).
    [Crossref]
  41. A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91–93 (1978).
    [Crossref] [PubMed]
  42. J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
    [Crossref]
  43. R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
    [Crossref]
  44. W. K. Bishel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  45. I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, and M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.
  46. A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
    [Crossref]

1986 (1)

1985 (5)

M. G. Raymer and L. A. Westling, “Quantum theory of Stokes generation with a multimode laser,” J. Opt. Soc. Am. B 2, 1417–1421 (1985).
[Crossref]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
[Crossref]

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[Crossref]

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[Crossref]

1984 (3)

J. Goldhar, M. W. Taylor, and J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

S. Szatmari and F. P. Schafer, “Picosecond gain dynamics of KrF*,” Appl. Phys. B 33, 219–223 (1984).
[Crossref]

F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
[Crossref]

1983 (3)

M. J. Shaw, “The bi-directional amplifier in the constant intensity approximation and its application to KrF lasers,” Appl. Phys. B 30, 5–10 (1983).
[Crossref]

M. J. Damzen and M. H. R. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. QE-19, 7–14 (1983).
[Crossref]

R. S. F. Chang and N. Djeu, “Amplification of a diffraction limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139–141 (1983).
[Crossref] [PubMed]

1982 (4)

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

J. Goldhar and J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[Crossref]

R. T. V. Kung and J. H. Hammond, “Phase front reproduction in Raman conversion,” IEEE J. Quantum Electron. QE-18, 1306–1310 (1982).
[Crossref]

G. C. Valley, “Transfer of pump spatial variations to Stokes phase in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 1370–1375 (1982).
[Crossref]

1981 (1)

W. L. Kruer, “Laser-plasma coupling in reactor sized targets,” Comments Mod. Phys. E. 6, 167–175 (1981).

1980 (3)

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980).
[Crossref]

E. A. Stappaerts, W. H. Long, and H. Komine, “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5, 4–6 (1980).
[Crossref] [PubMed]

A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
[Crossref]

1979 (6)

M. G. Raymer, J. Mostowski, and J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[Crossref]

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

1978 (2)

A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91–93 (1978).
[Crossref] [PubMed]

I. G. Zubarev and S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[Crossref]

1977 (2)

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

1975 (1)

S. A. Akhmanov, Yu. E. Dyakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).

1974 (2)

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

A. Z. Grasyuk, “Raman lasers (review),” Sov. J. Quantum Electron. 4, 269–282 (1974).
[Crossref]

1972 (1)

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

1970 (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[Crossref]

1969 (1)

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
[Crossref]

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov, Yu. E. Dyakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).

Amiranoff, F.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Basov, N. G.

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1981), pp. 819–827.

Bishel, W. K.

W. K. Bishel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Black, G.

W. K. Bishel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[Crossref]

Byer, R. L.

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980).
[Crossref]

W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

Carlsten, J. L.

M. G. Raymer, J. Mostowski, and J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[Crossref]

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[Crossref]

Chang, R. S. F.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[Crossref]

R. S. F. Chang and N. Djeu, “Amplification of a diffraction limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139–141 (1983).
[Crossref] [PubMed]

Czuchlewski, S. J.

G. W. York, S. J. Czuchlewski, L. A. Rosocha, and E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.

Damzen, M. J.

M. J. Damzen and M. H. R. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. QE-19, 7–14 (1983).
[Crossref]

Djeu, N.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[Crossref]

R. S. F. Chang and N. Djeu, “Amplification of a diffraction limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139–141 (1983).
[Crossref] [PubMed]

Duignan, M. T.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[Crossref]

Dyakov, Yu. E.

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

S. A. Akhmanov, Yu. E. Dyakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).

Dzhotyan, G. P.

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

Eason, R.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Edwards, C. B.

Eggleston, J.

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980).
[Crossref]

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[Crossref]

Ewing, J. J.

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

Fabbro, R.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Fabre, E.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Fedosejevs, R.

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[Crossref]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Fujioka, T.

F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
[Crossref]

Garbau-Labaune, C.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

George, E. V.

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

Goldhar, J.

J. Goldhar, M. W. Taylor, and J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

J. Goldhar and J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[Crossref]

Grasiuk, A. Z.

N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1981), pp. 819–827.

Grasyuk, A. Z.

A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
[Crossref]

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

A. Z. Grasyuk, “Raman lasers (review),” Sov. J. Quantum Electron. 4, 269–282 (1974).
[Crossref]

Haas, R. A.

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

Hammond, J. H.

R. T. V. Kung and J. H. Hammond, “Phase front reproduction in Raman conversion,” IEEE J. Quantum Electron. QE-18, 1306–1310 (1982).
[Crossref]

Hodgson, E.

Hodgson, E. M.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Hutchinson, M. H. R.

M. J. Damzen and M. H. R. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. QE-19, 7–14 (1983).
[Crossref]

Javan, A.

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

Kannari, F.

F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
[Crossref]

Karev, Ya. I.

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

Karev, Yu. I.

A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
[Crossref]

Keijser, R. A. J.

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Key, M. H.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Knaap, H. F. P.

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Komine, H.

Kruer, W. L.

W. L. Kruer, “Laser-plasma coupling in reactor sized targets,” Comments Mod. Phys. E. 6, 167–175 (1981).

Krupke, W. F.

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

Kung, R. T. V.

R. T. V. Kung and J. H. Hammond, “Phase front reproduction in Raman conversion,” IEEE J. Quantum Electron. QE-18, 1306–1310 (1982).
[Crossref]

Landolt–Boernstein,

Landolt–Boernstein, Zahlenwarte und Functionen aus Physik, Chemie, Astronomie, Geophysik und Technik, II Band, 8. Teil. Optische Konstanten (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962).

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Lehmberg, R. H.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[Crossref]

Lombardi, J. R.

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Long, W. H.

Losev, L. L.

A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
[Crossref]

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

Lowdermilk, W. H.

I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, and M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.

Maier, M.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

Matsumoto, Y.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Max, C. E.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Michand, A.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Mikhailov, S. I.

I. G. Zubarev and S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[Crossref]

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

Mironov, A. B.

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

Mostowski, J.

M. G. Raymer, J. Mostowski, and J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[Crossref]

Murray, J. R.

J. Goldhar, M. W. Taylor, and J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

J. Goldhar and J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[Crossref]

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[Crossref]

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

O’Neill, F.

M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986).
[Crossref]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Obara, M.

F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
[Crossref]

Offenberger, A. A.

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[Crossref]

Okuda, I.

M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
[Crossref]

Owadano, Y.

M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986).
[Crossref]

M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
[Crossref]

Owyoung, A.

Pantell, R. H.

Textbooks of nonlinear optics such as those by R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969) and Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

Park, Y. K.

W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

Partanen, J. P.

M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986).
[Crossref]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Pavlov, L. I.

S. A. Akhmanov, Yu. E. Dyakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Placzek, G.

G. Placzek, “Rayleigh and Raman scattering,” in Handbuch der Radiologie, E. Marx ed. (Akademische Verlagsgesellschaft, Leipzig, 1934), p. 205.

Puthoff, H. E.

Textbooks of nonlinear optics such as those by R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969) and Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

Raymer, M. G.

M. G. Raymer and L. A. Westling, “Quantum theory of Stokes generation with a multimode laser,” J. Opt. Soc. Am. B 2, 1417–1421 (1985).
[Crossref]

M. G. Raymer, J. Mostowski, and J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[Crossref]

Rosocha, L. A.

G. W. York, S. J. Czuchlewski, L. A. Rosocha, and E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.

Ross, I. N.

M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986).
[Crossref]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Sakagami, Y.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

Salesky, E. T.

G. W. York, S. J. Czuchlewski, L. A. Rosocha, and E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.

Sanctuary, B. C.

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Schafer, F. P.

S. Szatmari and F. P. Schafer, “Picosecond gain dynamics of KrF*,” Appl. Phys. B 33, 219–223 (1984).
[Crossref]

Shaw, M. J.

M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O’Neill, “High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466–1475 (1986).
[Crossref]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

M. J. Shaw, “The bi-directional amplifier in the constant intensity approximation and its application to KrF lasers,” Appl. Phys. B 30, 5–10 (1983).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 50–51.

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[Crossref]

Smirnov, V. G.

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

Smirnow, V. G.

A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
[Crossref]

Staggs, M. C.

I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, and M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.

Stappaerts, E. A.

Suda, A.

F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
[Crossref]

Swingle, J. C.

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

Szatmari, S.

S. Szatmari and F. P. Schafer, “Picosecond gain dynamics of KrF*,” Appl. Phys. B 33, 219–223 (1984).
[Crossref]

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[Crossref]

Tanimoto, M.

M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
[Crossref]

Taylor, M. W.

J. Goldhar, M. W. Taylor, and J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

Thomas, I. M.

I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, and M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.

Trutna, W. R.

W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

Valley, G. C.

G. C. Valley, “Transfer of pump spatial variations to Stokes phase in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 1370–1375 (1982).
[Crossref]

van der Hout, K. D.

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Virmont, J.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[Crossref]

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
[Crossref]

Weinfeld, M.

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Westling, L. A.

Wilder, J. G.

I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, and M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.

Yaoita, A.

M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
[Crossref]

York, G. W.

G. W. York, S. J. Czuchlewski, L. A. Rosocha, and E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.

Zubarev, I. G.

I. G. Zubarev and S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[Crossref]

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1981), pp. 819–827.

Appl. Phys. B (2)

M. J. Shaw, “The bi-directional amplifier in the constant intensity approximation and its application to KrF lasers,” Appl. Phys. B 30, 5–10 (1983).
[Crossref]

S. Szatmari and F. P. Schafer, “Picosecond gain dynamics of KrF*,” Appl. Phys. B 33, 219–223 (1984).
[Crossref]

Appl. Phys. Lett. (2)

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. P. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, and Y. Sakagami, “X-ray emission from KrF laser-produced Al plasma,” Appl. Phys. Lett. 46, 28–30 (1985).
[Crossref]

F. Kannari, A. Suda, M. Obara, and T. Fujioka, “Theoretical evaluation of electron-beam excited KrF lasers using argon-free mixtures of one atmosphere,” Appl. Phys. Lett. 45, 305–307 (1984).
[Crossref]

Comments Mod. Phys. E. (1)

W. L. Kruer, “Laser-plasma coupling in reactor sized targets,” Comments Mod. Phys. E. 6, 167–175 (1981).

IEEE J. Quantum Electron. (11)

J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[Crossref]

J. J. Ewing, R. A. Haas, J. C. Swingle, E. V. George, and W. F. Krupke, “Optical pulse compressor systems for laser fusion,” IEEE J. Quantum Electron. QE-15, 368–379 (1979).
[Crossref]

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu, “Raman beam clean up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[Crossref]

W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

J. Goldhar, M. W. Taylor, and J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

M. J. Damzen and M. H. R. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. QE-19, 7–14 (1983).
[Crossref]

R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[Crossref]

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980).
[Crossref]

J. Goldhar and J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[Crossref]

R. T. V. Kung and J. H. Hammond, “Phase front reproduction in Raman conversion,” IEEE J. Quantum Electron. QE-18, 1306–1310 (1982).
[Crossref]

G. C. Valley, “Transfer of pump spatial variations to Stokes phase in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 1370–1375 (1982).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

J. Mol. Spectrosc. (1)

J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

M. Tanimoto, A. Yaoita, I. Okuda, and Y. Owadano, “Efficient high power-density operation regime of KrF-laser amplifiers for fusion driver,” Jpn. J. Appl. Phys. 24, L311–L313 (1985).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (1)

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
[Crossref]

Phys. Rev. A (2)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970).
[Crossref]

M. G. Raymer, J. Mostowski, and J. L. Carlsten, “Theory of stimulated Raman scattering with broad band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[Crossref]

Phys. Rev. Lett. (1)

C. Garbau-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michand, “The effects of laser wavelength and pulse duration on laser light absorption and back reflection,” Phys. Rev. Lett. 48, 1018–1021 (1982).
[Crossref]

Physica (1)

R. A. J. Keijser, J. R. Lombardi, K. D. van der Hout, B. C. Sanctuary, and H. F. P. Knaap, “The pressure broadening of the rotational Raman lines of hydrogen isotopes,” Physica 76, 585–608 (1974).
[Crossref]

Prog. Quantum Electron. (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Sov. J. Quantum Electron. (5)

A. Z. Grasyuk, “Raman lasers (review),” Sov. J. Quantum Electron. 4, 269–282 (1974).
[Crossref]

I. G. Zubarev and S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[Crossref]

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Influence of the spectral width and statistics of a Stokes signal on the efficiency of stimulated Raman scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 7, 783–785 (1977).
[Crossref]

N. G. Basov, A. Z. Grasyuk, Ya. I. Karev, L. L. Losev, and V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[Crossref]

A. Z. Grasyuk, Yu. I. Karev, L. L. Losev, and V. G. Smirnow, “Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by Nd laser radiation,” Sov. J. Quantum Electron. 10, 1542–1543 (1980).
[Crossref]

Sov. Phys. JETP (2)

G. P. Dzhotyan, Yu. E. Dyakov, I. G. Zubarev, A. B. Mironov, and S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

S. A. Akhmanov, Yu. E. Dyakov, and L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad band pump,” Sov. Phys. JETP 39, 249–256 (1975).

Other (9)

G. Placzek, “Rayleigh and Raman scattering,” in Handbuch der Radiologie, E. Marx ed. (Akademische Verlagsgesellschaft, Leipzig, 1934), p. 205.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 50–51.

Landolt–Boernstein, Zahlenwarte und Functionen aus Physik, Chemie, Astronomie, Geophysik und Technik, II Band, 8. Teil. Optische Konstanten (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962).

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1981), pp. 819–827.

Textbooks of nonlinear optics such as those by R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969) and Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

G. W. York, S. J. Czuchlewski, L. A. Rosocha, and E. T. Salesky, “Performance of the large aperture module of the Aurora KrF laser system,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), p. 188.

W. K. Bishel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

I. M. Thomas, J. G. Wilder, W. H. Lowdermilk, and M. C. Staggs, “High damage threshold porous silica anti-reflective coating,” paper presented at the Annual Symposium on Laser Induced Damage in Optical Materials, Boulder, Colorado, October 1984.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Example of 2 × 2 staged multiplexer using KrF and forward Raman amplifiers. The solid lines denote KrF beams and the dashed lines Stokes beams.

Fig. 2
Fig. 2

Raman scattering: Pump photon absorbed, Stokes photon emitted, and molecule raised to an excited level.

Fig. 3
Fig. 3

Geometry for spontaneous Raman scattering.

Fig. 4
Fig. 4

The calculated energy-conversion efficiency with monochromatic pumping as a function of the small-signal gain increment.

Fig. 5
Fig. 5

The growth of the vibration-wave amplitude and the beat-wave amplitudes used to drive it in a broadband-pumped Raman amplifier. The vectors are drawn in the complex plane.

Fig. 6
Fig. 6

The wave-vector relations for collinear pumping in a dispersive medium.

Fig. 7
Fig. 7

The effect of dispersion on the growth of the vibration-wave amplitude with (b) low and (c) high gain. Dispersion makes the beat-wave amplitudes rotate when the pump and Stokes beams propagate. The vectors are drawn in the complex plane.

Fig. 8
Fig. 8

The wave-vector relations for noncollinear pumping.

Fig. 9
Fig. 9

The pump and Stokes beams interacting in a light guide.

Fig. 10
Fig. 10

Multibeam pumping of a single Stokes beam in a light guide.

Fig. 11
Fig. 11

The cone of pump wave vectors that can scatter from the vibration wave vector kυ. The vibration wave is produced by the pump and Stokes beams with wave vectors kp and ks, respectively.

Fig. 12
Fig. 12

The generation of second Stokes photons from first Stokes photons by scattering from a vibration wave produced by the pump beam and the first Stokes beam.

Fig. 13
Fig. 13

Raman gain coefficient in H2 pumped at 249 nm as a function of pressure and the angle between the pump and the Stokes beams.

Fig. 14
Fig. 14

Schematic layout of the proposed Raman generator and amplifier chain. The power amplifier is pumped by the optical-multiplexer pulses from the Sprite high-power KrF-laser system. The Stokes beam is indicated by a solid line and the pump beams by dashed lines.

Tables (1)

Tables Icon

Table 1 Projected Parameters and Performance of the Sprite Raman Beam Combiner

Equations (75)

Equations on this page are rendered with MathJax. Learn more.

2 E μ 0 2 E t 2 = μ 0 2 P nl t 2
P = ρ n α E ,
α = α 0 + ( α q ) 0 q ,
d 2 q d t 2 + Γ d q d t + ω υ 2 q = 1 m F ,
F = q ( p · E ) = ( α q ) 0 ( E · E ) .
E = 1 / 2 [ E p ( z , t ) exp ( i k p z i ω p t ) + E s ( z , t ) × exp ( i k s z i ω s t ) + c . c . ] e ˆ x ,
q = 1 / 2 q υ ( z , t ) exp ( i k υ z i ω υ t ) + c . c . ,
k υ = k p k s , ω υ = ω p ω s ,
E p z + 1 υ p E p t = i υ p ω p υ s ω s C 1 q υ E s
E s z + 1 υ s E s t = i C 1 q υ * E p ,
C 1 = μ 0 ρ n υ s ω s 4 ( α q ) 0 ,
q υ t + 1 2 Γ q υ = i C 2 E p E s * ,
C 2 = 1 2 ω υ m ( α q ) 0 .
q υ = i 2 C 2 Γ E p E s * .
z = z , t = t z / υ .
E p z = ω p ω s 2 C 1 C 2 Γ | E s | 2 E p
E s z = 2 C 1 C 2 Γ | E p | 2 E s .
I p = υ 0 2 | E p | 2 I s = υ 0 2 | E s | 2 ,
I p z = ω p ω s γ I s I p
I s z = γ I p I s ,
γ = 8 C 1 C 2 υ 0 Γ = ρ n ω s υ 2 0 Γ ω υ m ( α q ) 0 2 .
w st = ( ξ + 1 ) w sp .
d W sp = I p ρ n σ Ω d V Δ Ω .
d W sp d z = W p ρ n σ Ω Δ Ω .
ξ = I s h ν s c ( 4 π ν s 2 Δ ν R c 3 Δ Ω 4 π ) 1 ,
d W st d z = ρ n λ s 2 h ν s 1 Δ ν R σ Ω I s W p .
γ ( ν ) = ρ n λ s 2 h ν s s ( ν ) σ Ω .
I 0 = I p ( z ) + ω p ω s I s ( z )
1 I s I s z 1 I p = γ ( I p + ω p ω s I s ) = γ I 0
I s ( z ) = I 0 I s ( 0 ) I p ( 0 ) exp ( γ I 0 z ) 1 + ω p ω s I s ( 0 ) I p ( 0 ) exp ( γ I 0 z ) .
η = I s ( L ) I s ( 0 ) I p ( 0 ) ,
E p ( z , t ) = n E p n ( z , t ) exp ( i Δ k p n z i n Δ ω c t ) .
E s ( z , t ) = n E s n ( z , t ) exp ( i Δ k s n z i n Δ ω c t ) .
q υ t + 1 2 Γ q υ = i C 2 n n E p n E s n * × exp [ i ( Δ k p n Δ k s n ) z i ( n n ) Δ ω c t ] .
q υ = 2 i C 2 Γ n E p n E s n * exp [ i ( Δ k p n Δ k s n ) z ] .
Δ k υ n = Δ k p n Δ k s n = ( 1 u p 1 u s ) n Δ ω c ,
q υ = 2 i C 2 Γ n E p n E s n * .
E p n z = i ω p ω s C 1 q υ E s n
E s n z = i C 1 q υ * E p n .
z ( E p n E s n * ) = i C 1 ( ω p ω s | E s n | 2 q υ | E p n | 2 q υ ) .
z ( E p n E s n * ) = 2 C 1 C 2 Γ | E p n | 2 n E p n E s n * .
E s n = a c exp ( i ϕ c ) E p n ,
q υ z = 1 2 γ ( I p ω p ω s I s ) q υ ,
I p = υ 0 2 n | E p n | 2 , I s = υ 0 2 n | E s n | 2
q υ = q υ ( 0 ) exp [ 1 / 2 γ I p ( 0 ) z ] ,
E s n z = i C 1 E p n q υ ( 0 ) * exp [ 1 / 2 γ I p ( 0 ) z ] .
E s n ( z ) = E s n ( 0 ) + 2 i C 1 γ E p n ( 0 ) q υ ( 0 ) * I p ( 0 ) { exp [ 1 / 2 γ I p ( 0 ) z ] 1 } ,
I s ( z ) = I s ( 0 ) + ( υ 0 Γ 4 C 2 ) 2 | q υ ( 0 ) | 2 { exp [ γ I p ( 0 ) z ] 1 } .
n E p n E s n * = 1 N 1 / 2 exp ( i ϕ c ) n | E p n | | E s n | ,
q υ ( 0 ) = 4 i C 2 υ 0 Γ exp ( i ϕ c ) I p ( 0 ) 1 / 2 I s ( 0 ) 1 / 2 N 1 / 2 ,
I s ( z ) = I s ( 0 ) + I s ( 0 ) N { exp [ γ I p ( 0 ) z ] 1 } .
d I p d z = ω p ω s υ 0 2 4 C 1 C 2 Γ | n E p n E s n * | 2
d I s d z = υ 0 2 4 C 1 C 2 Γ | n E p n E s n * | 2 .
I s ( z ) = I s ( 0 ) N exp [ γ I p ( 0 ) z ] 1 + ω p ω s 1 N I s ( 0 ) I p ( 0 ) exp [ γ I p ( 0 ) z ] .
l d 1 Δ k υ = 1 Δ ω p ( 1 u p 1 u s ) 1 ,
I c = Δ ω p γ ( 1 u p 1 u s ) .
k υ s = k p cos θ k s .
Δ k υ s = Δ ω p u p cos θ Δ ω p u s ,
l d = υ Δ ω p ( 1 cos θ ) ,
I c = Δ ω p γ υ ( 1 cos θ ) .
d I a d z = ( d I a d z ) s p + ( d I a d z ) s t ,
( d I a d z ) s p = I p ρ n σ Ω Δ Ω ,
d I a d z = γ I p ( h ν s λ s 2 Δ ν R Ω + I a ) ,
I a ( 0 ) = h ν s λ s 2 Δ ν R Δ Ω
I 2 s ( z ) = I 2 s ( 0 ) exp [ γ 2 s 0 z I s ( z ) d z ] ,
| k p | + | k 2 s | = 2 | k s |
θ 2 s = ( n p + n 2 s 2 n s n s ) 1 / 2 ,
Δ ν R = D 0 | k υ | 2 π ρ n + a ρ n ,
| k υ | 2 = 4 π 2 [ ν ¯ υ 2 + 2 ν ¯ p ( ν ¯ p ν ¯ υ ) ( 1 cos θ ) ] .
γ = λ s 2 h ν s 2 π Δ ν R ρ n f B σ Ω ,
ρ * n A Δ L = I p τ p A h ν p d η d L Δ L ,
ρ * n = γ I 2 p τ p 4 h ν p .
ρ n L c F p h ν p .
γ I ¯ p ( x , y ) L = γ 0 L I p ( x , y , z ) d z ,
I ¯ p ( x , y ) = 1 L c 0 L c I p ( x , y , z ) d z ,

Metrics