Abstract

The theory of forward Raman amplifiers is developed by considering both monochromatic and broadband pump waves. The effects of dispersion are studied. The cases of a small angle between pump and Stokes beams and multibeam pumping in a light guide are also treated. The growth of amplified spontaneous Raman scattering and higher-order Stokes and anti-Stokes components are considered. As a result of these studies, we conclude that a high-power forward Raman amplifier employing low-pressure gases in a light guide can be designed to operate efficiently with a stage gain of the order of 103. As an application, we present a design of a Raman amplifier that will be used as a beam combiner in an optical-multiplexer pulse-compression system for a high-power KrF laser. We also present some practical considerations that should be taken into account when this kind of system is designed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (75)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription