Abstract

Cw laser action of Ti:Al2O3 under argon-ion laser pumping is presented. We analyze the free-running characteristics and the effective emission cross section of the laser. The temperature dependence of the 2E lifetime was measured from 4 to 650 K and is explained in a single-phonon model. The quantum efficiency of Ti:Al2O3 at room temperature is 80%.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Moulton, “Ti-doped sapphire: a tunable solid-state laser,” Opt. News 8(6), 9 (1982).
  2. P. Moulton, “New developments in solid state lasers,” Laser Focus 19(5), 83 (1983).
  3. P. Moulton, “Recent advances in solid state lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), p. 77, paper WA2.
  4. P. Moulton, “Recent advances in transition-metal-doped lasers,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.
  5. G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.
  6. G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985).
    [CrossRef]
  7. B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).
  8. L. Esterowitz, R. Allen, C. P. Khattak, “Stimulated emission from flashpumped Ti:Al2O3,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.
  9. P. Albers, G. Huber, “Ti3+dotierter Saphir und YAG: Elektron-Phonon-Kopplung und Lasereigenschaften eines 3d1-Elekronensystems,” dissertation (Universität Hamburg, Hamburg, Federal Republic of Germany, 1985).
  10. D. S. McClure, “Optical spectra of transition metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
    [CrossRef]
  11. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
    [CrossRef]
  12. E. Stark, “Elektronische Kompensationskalorimetrie als Verfahren zur Messung von Quantenwirkungsgraden und zur Unterscheidung verschiedener nichtstrahlender Zerfallsprozesse in Laserkristallen,” Dissertation, Universität Hamburg (1983).
  13. K. Huang, A. Rhys, “Theory of light absorption and nonradiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406 (1950).
    [CrossRef]
  14. S. J. Pekar, J. Exp Phys. USSR 20, 510 (1950).
  15. C. W. Struck, W. H. Fonger, “Transition rates in a single ħω model,” J. Lumines. 18/19, 101–104 (1979).
    [CrossRef]
  16. R. M. Macfarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
    [CrossRef]
  17. C. W. Struck, W. H. Fonger, “Unified model of the temperature quenching of narrow line and broad band emission,” J. Lumines. 10, 1–30 (1975).
    [CrossRef]
  18. G. Huber, “Miniature neodymium lasers,” in Current Topics of Materials Science 4, E. Kaldis, ed. (North-Holland, Amsterdam, 1980), pp. 1–45.

1985

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

1983

P. Moulton, “New developments in solid state lasers,” Laser Focus 19(5), 83 (1983).

1982

P. Moulton, “Ti-doped sapphire: a tunable solid-state laser,” Opt. News 8(6), 9 (1982).

1979

C. W. Struck, W. H. Fonger, “Transition rates in a single ħω model,” J. Lumines. 18/19, 101–104 (1979).
[CrossRef]

1975

C. W. Struck, W. H. Fonger, “Unified model of the temperature quenching of narrow line and broad band emission,” J. Lumines. 10, 1–30 (1975).
[CrossRef]

1968

R. M. Macfarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

1964

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[CrossRef]

1962

D. S. McClure, “Optical spectra of transition metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

1950

K. Huang, A. Rhys, “Theory of light absorption and nonradiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406 (1950).
[CrossRef]

S. J. Pekar, J. Exp Phys. USSR 20, 510 (1950).

Albers, P.

P. Albers, G. Huber, “Ti3+dotierter Saphir und YAG: Elektron-Phonon-Kopplung und Lasereigenschaften eines 3d1-Elekronensystems,” dissertation (Universität Hamburg, Hamburg, Federal Republic of Germany, 1985).

Albrecht, G. F.

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

Allen, R.

L. Esterowitz, R. Allen, C. P. Khattak, “Stimulated emission from flashpumped Ti:Al2O3,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

Bagdasarov, K. S.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Chirkin, A. P.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Chirkina, K. P.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Eggleston, J. M.

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

Esterowitz, L.

L. Esterowitz, R. Allen, C. P. Khattak, “Stimulated emission from flashpumped Ti:Al2O3,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

Ewing, J. J.

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

Fedorov, E. A.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Fonger, W. H.

C. W. Struck, W. H. Fonger, “Transition rates in a single ħω model,” J. Lumines. 18/19, 101–104 (1979).
[CrossRef]

C. W. Struck, W. H. Fonger, “Unified model of the temperature quenching of narrow line and broad band emission,” J. Lumines. 10, 1–30 (1975).
[CrossRef]

Huang, K.

K. Huang, A. Rhys, “Theory of light absorption and nonradiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406 (1950).
[CrossRef]

Huber, G.

P. Albers, G. Huber, “Ti3+dotierter Saphir und YAG: Elektron-Phonon-Kopplung und Lasereigenschaften eines 3d1-Elekronensystems,” dissertation (Universität Hamburg, Hamburg, Federal Republic of Germany, 1985).

G. Huber, “Miniature neodymium lasers,” in Current Topics of Materials Science 4, E. Kaldis, ed. (North-Holland, Amsterdam, 1980), pp. 1–45.

Khattak, C. P.

L. Esterowitz, R. Allen, C. P. Khattak, “Stimulated emission from flashpumped Ti:Al2O3,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

Kolerov, A. N.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Macfarlane, R. M.

R. M. Macfarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

McClure, D. S.

D. S. McClure, “Optical spectra of transition metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[CrossRef]

Minaev, A. A.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Moulton, P.

P. Moulton, “New developments in solid state lasers,” Laser Focus 19(5), 83 (1983).

P. Moulton, “Ti-doped sapphire: a tunable solid-state laser,” Opt. News 8(6), 9 (1982).

P. Moulton, “Recent advances in transition-metal-doped lasers,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

P. Moulton, “Recent advances in solid state lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), p. 77, paper WA2.

Orekhova, V. P.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Pekar, S. J.

S. J. Pekar, J. Exp Phys. USSR 20, 510 (1950).

Rhys, A.

K. Huang, A. Rhys, “Theory of light absorption and nonradiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406 (1950).
[CrossRef]

Semsnov, V. B.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Seregin, V. F.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Sevast’yanov, B. K.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Stark, E.

E. Stark, “Elektronische Kompensationskalorimetrie als Verfahren zur Messung von Quantenwirkungsgraden und zur Unterscheidung verschiedener nichtstrahlender Zerfallsprozesse in Laserkristallen,” Dissertation, Universität Hamburg (1983).

Starostina, L. S.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Struck, C. W.

C. W. Struck, W. H. Fonger, “Transition rates in a single ħω model,” J. Lumines. 18/19, 101–104 (1979).
[CrossRef]

C. W. Struck, W. H. Fonger, “Unified model of the temperature quenching of narrow line and broad band emission,” J. Lumines. 10, 1–30 (1975).
[CrossRef]

Sturge, M. D.

R. M. Macfarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

Tsigler, I. N.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Vratskii, A. N.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Wong, J. Y.

R. M. Macfarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

J. Chem. Phys.

D. S. McClure, “Optical spectra of transition metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

J. Exp Phys. USSR

S. J. Pekar, J. Exp Phys. USSR 20, 510 (1950).

J. Lumines.

C. W. Struck, W. H. Fonger, “Transition rates in a single ħω model,” J. Lumines. 18/19, 101–104 (1979).
[CrossRef]

C. W. Struck, W. H. Fonger, “Unified model of the temperature quenching of narrow line and broad band emission,” J. Lumines. 10, 1–30 (1975).
[CrossRef]

Laser Focus

P. Moulton, “New developments in solid state lasers,” Laser Focus 19(5), 83 (1983).

Opt. Commun.

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3as a lasing material,” Opt. Commun. 52, 401–404 (1985).
[CrossRef]

Opt. News

P. Moulton, “Ti-doped sapphire: a tunable solid-state laser,” Opt. News 8(6), 9 (1982).

Phys. Rev.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[CrossRef]

R. M. Macfarlane, J. Y. Wong, M. D. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev. 166, 250–258 (1968).
[CrossRef]

Proc. R. Soc. London Ser. A

K. Huang, A. Rhys, “Theory of light absorption and nonradiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406 (1950).
[CrossRef]

Sov. Phys. Crystallog.

B. K. Sevast’yanov, K. S. Bagdasarov, E. A. Fedorov, V. B. Semsnov, I. N. Tsigler, K. P. Chirkina, L. S. Starostina, A. P. Chirkin, A. A. Minaev, V. P. Orekhova, V. F. Seregin, A. N. Kolerov, A. N. Vratskii, “Tunable laser based on Al2O3Ti3+ crystal,” Sov. Phys. Crystallog. 29, 566–567 (1985).

Other

L. Esterowitz, R. Allen, C. P. Khattak, “Stimulated emission from flashpumped Ti:Al2O3,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

P. Albers, G. Huber, “Ti3+dotierter Saphir und YAG: Elektron-Phonon-Kopplung und Lasereigenschaften eines 3d1-Elekronensystems,” dissertation (Universität Hamburg, Hamburg, Federal Republic of Germany, 1985).

P. Moulton, “Recent advances in solid state lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), p. 77, paper WA2.

P. Moulton, “Recent advances in transition-metal-doped lasers,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

G. F. Albrecht, J. M. Eggleston, J. J. Ewing, “Measurements of Ti3+:Al2O3 as a lasing material,” presented at 1st Annual Conference on Tunable Solid State Lasers, La Jolla, Calif., 1984.

E. Stark, “Elektronische Kompensationskalorimetrie als Verfahren zur Messung von Quantenwirkungsgraden und zur Unterscheidung verschiedener nichtstrahlender Zerfallsprozesse in Laserkristallen,” Dissertation, Universität Hamburg (1983).

G. Huber, “Miniature neodymium lasers,” in Current Topics of Materials Science 4, E. Kaldis, ed. (North-Holland, Amsterdam, 1980), pp. 1–45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption spectra of Ti3+:Al2O3 at 300 and 4 k.

Fig. 2
Fig. 2

Fluorescence spectra at 300 and 4 K corrected for the spectral response of the detection system.

Fig. 3
Fig. 3

Quasi-cw laser output power versus absorbed pump power. Crystal length l = 2 mm; Ti3+ concentration, nTi ≈ 1.7 × 1019 cm−3.

Fig. 4
Fig. 4

Decay curves at different temperatures.

Fig. 5
Fig. 5

Temperature dependence of the 2E lifetime. ×’s, measured values; solid line, fit from the single-phonon model.

Fig. 6
Fig. 6

Principal arrangement of the quantum-efficiency measurement. For explanations see text.

Fig. 7
Fig. 7

Configurational diagram from Ref. 9 with Jahn–Teller effect. Absorption, fluorescence, and nonradiative decays are indicated by arrows.

Fig. 8
Fig. 8

Typical infrared absorption in Ti:Al2O3 arising from impurities or defects.

Tables (1)

Tables Icon

Table 1 Comparison of Directly Measured Quantum Efficiencies η and Quantum Efficiencies Obtained from the Lifetime Data with τr =3.85 μsec

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

η = τ r - 1 / τ - 1 ,
η = P r ν abs P abs ν r .
η = ν abs ν r ( 1 - P n r P abs ) .
τ n r - 1 = τ - 1 - τ r - 1 ,
ψ ( q , Q ) = φ ( q , Q ) χ ( Q ) .
W p = m = 0 ( 1 - r ) r m χ f ( Q ) χ i ( Q ) 2 = exp ( - S 2 m + 1 ) ( 2 π y p ) - 1 / 2 × exp ( y p ) ( 2 S 1 + m / ( p + y p ) ) p ,             p 0 ,
y p = ( p 2 + 4 S 2 1 + m m ) 1 / 2 , m = r / ( 1 - r ) , r = exp ( - ω / k T ) .
τ - 1 = τ r - 1 + τ n r 0 W - 1 p ( m , S ) .
τ r = 3.85 μ sec , τ n r 0 - 1 = 6 × 10 14 sec - 1 , ω = 392 cm - 1 , corresponding to p 41 , S = 11.25.
η = ν ν abs - 1 T ( L + T ) - 1 .
2 σ e N th l = L + T
N th = P th τ ( h ν abs π w 2 l ) - 1

Metrics