Abstract

The design and performance of two optical latches, the set–reset (S-R) latch and D flip-flop have been studied. These latches are the building blocks of large optical processors. The latches are built using two optical logic operations NAND and NOT. Both NAND and NOT operations are realized by using the ultrafast phase response during two-photon absorption process in semiconductor optical amplifiers. Rate equations for semiconductor optical amplifiers, for input data signals with high intensity, configured in the form of a Mach–Zehnder interferometer, have been solved. The input intensities are high enough that the two-photon induced phase change is larger than the regular gain induced phase change. Results show that this scheme can realize the functions of the S-R latch and D flip-flop at high speeds (250Gb/s) with good signal-to-noise ratio.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
    [CrossRef]
  2. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
    [CrossRef]
  3. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
    [CrossRef]
  4. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
    [CrossRef]
  5. K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
    [CrossRef]
  6. Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
    [CrossRef]
  7. A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
    [CrossRef]
  8. T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757–1766 (2007).
    [CrossRef]
  9. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13, 1892–1899 (2005).
    [CrossRef]
  10. H. J. S. Dorren, G. D. Khoe, and D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
    [CrossRef]
  11. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
    [CrossRef]
  12. H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
    [CrossRef]
  13. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
    [CrossRef]
  14. H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, and J. F. Donegan, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
    [CrossRef]
  15. H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
    [CrossRef]
  16. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).
  17. A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
    [CrossRef]
  18. G. P. Agrawal, Fiber-Optic Communication System, 3rd ed. (Wiley, 2002).

2007 (1)

T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757–1766 (2007).
[CrossRef]

2006 (1)

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

2005 (2)

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

2004 (4)

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

2003 (1)

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

2002 (3)

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, and J. F. Donegan, “Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation,” J. Opt. Soc. Am. B 19, 2396–2402 (2002).
[CrossRef]

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

H. J. S. Dorren, G. D. Khoe, and D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

2000 (1)

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

1999 (1)

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

1997 (1)

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

1996 (1)

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication System, 3rd ed. (Wiley, 2002).

Akiyama, T.

T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757–1766 (2007).
[CrossRef]

Avramopoulos, H.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Berg, T. W.

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Bintjas, C.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

Bradley, A. L.

Burkhard, H.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Byun, Y.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Chan, C.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Chan, K.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Chang, Y. H.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Chen, H.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Chen, L.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Dall’ Ara, R.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

de Waardt, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

de Waart, H.

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

Delfyett, P. J.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

de-Waardt, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Dienes, A.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Dijaili, S.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Donegan, J. F.

Dong, H.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

Dorren, H. J. S.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

H. J. S. Dorren, G. D. Khoe, and D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Dunbar, L. A.

Dutta, N. K.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).

Folliot, H.

Guekos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Hansmann, S.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Hasama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

Hatziefremidis, A.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Hegarty, J.

Heritage, J. P.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Hong, M. Y.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Houbavlis, T.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Ishikawa, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

Jaques, J.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Jhon, Y.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Ju, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Kalyvas, M.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

Kawashima, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

Khoe, G. D.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

H. J. S. Dorren, G. D. Khoe, and D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Kim, J.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Kim, S.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Krug, T.

Lee, S.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Lenstra, D.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

H. J. S. Dorren, G. D. Khoe, and D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Leuthold, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Li, Z.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Liu, Y.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

Lynch, M.

Meccozi, A.

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

Mishra, A. K.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Mork, J.

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

Occhi, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Patterson, F. G.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

Piccirilli, A. B.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Schares, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

Simoyama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

Stathopoulos, T.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

Sugawara, M.

T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757–1766 (2007).
[CrossRef]

Sun, H.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

Theophilopoulos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

Tong, F.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Uskov, A. V.

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Wang, Q.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).

Woo, D.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Yang, X.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

Zhang, S.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

Zhu, G.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

Zoiros, K.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Electron. Lett. (2)

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’ Ara, “10  Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35, 1650–1652 (1999).
[CrossRef]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41, 1397–1399 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de-Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 2, 523–539 (1996).
[CrossRef]

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

H. J. S. Dorren, X. Yang, D. Lenstra, H. de Waart, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 792–794 (2003).
[CrossRef]

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’ Ara, “20  Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12, 834–836 (2000).
[CrossRef]

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20  Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80  Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48, 1672–1675 (2006).
[CrossRef]

Opt. Commun. (1)

H. J. S. Dorren, G. D. Khoe, and D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757–1766 (2007).
[CrossRef]

Other (2)

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).

G. P. Agrawal, Fiber-Optic Communication System, 3rd ed. (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

The left figure is the schematic of the S-R latch. The right figure is the truth table for the S-R function.

Fig. 2.
Fig. 2.

The left figure is the schematic of the D flip-flop. The right figure is the truth table for D-flip-flop function.

Fig. 3.
Fig. 3.

Schematic of a NAND logic gate using two Mach–Zehnder interferometers in series configuration.

Fig. 4.
Fig. 4.

Calculated gain and phase change in an SOA due to a series of pulses shown in (a). (b) Gain modulation as a function of time, (c) cross-phase modulation (XPM) due to carrier density modulation as a function of time, and (d) total phase modulation including two-photon absorption as a function of time. Note the periodic total phase change is primarily due to two-photon absorption in (d).

Fig. 5.
Fig. 5.

(a) Data A and Data B are shown on the left. Simulated results of output (NAND) and eye pattern of the output (Q) are shown on the right for an 8-bit pseudorandomly generated pattern. (b) Data A and Data B are shown on the left. Simulated results of output (NAND) and eye pattern of the output (Q) are shown on the right for a 30-bit pseudorandomly generated pattern. The above set of figures is for 250Gb/s data rate.

Fig. 6.
Fig. 6.

Schematic of a S-R latch. The figure shows all the SOA-MZIs.

Fig. 7.
Fig. 7.

(a) Set and reset signals are shown on the left for an 8-bit pseudorandomly generated pattern. Simulated results of output (Q in Fig. 1) and eye pattern of the output (Q) are shown on the right. (b) Set and reset signals are shown on the left for a 30-bit pseudorandomly generated pattern. Simulated results of output (Q in Fig. 1) and eye pattern of the output (Q) are shown on the right. The above set of figures is for 250Gb/s data rate.

Fig. 8.
Fig. 8.

Set and reset signals are shown on the left. Simulated results of output (Q in Fig. 1) and inverse of Q (Q) are shown on the right. Note that if R=1, S=0 then Q becomes 1 (at 20ps); also Q remains set at 1 even if R becomes 0 (after 40ps), if S=0. If R=0, S=1 then Q becomes 0 when S turns on (S=1) (e.g., at 70 ps), i.e., Q resets to 0 when S turns on. Please also note that if R=1, S=1 there is no change in Q from previous state (i.e., Q remains 0, e.g., at 100ps). Q (Q-bar) is inverse of Q.

Fig. 9.
Fig. 9.

Schematic of a D flip-flop. The figure shows all the SOA-MZIs.

Fig. 10.
Fig. 10.

(a) Data (D) and gate (G) are shown on the left for an 8-bit pseudorandomly generated pattern. Simulated results of output (Q in Fig. 2) and eye pattern of the output (Q) are shown on the right. (b) Data (D) and gate (G) are shown on the left for a 30-bit pseudorandomly generated pattern. Simulated results of output (Q in Fig. 2) and eye pattern of the output (Q) are shown on the right. The above set of figures is for 250Gb/s data rate.

Fig. 11.
Fig. 11.

Calculated quality factor Q at different operating bit-rates and different input data stream average powers (left, D flip-flop; right, S-R latch).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δϕ=(1/2)βα2S(t)L,
Pout(t)=Pin(t)4[G1(t)+G2(t)2G1(t)G2(t)cos(ϕ1(t)ϕ2(t))],
dhl(t)dt=h0hl(t)τcP(t)Esat[ehtotal(t)1],
dhCH(t)dt=hCH(t)τCHεCHκτCH[ehtotal(t)1]P(t),
dhSHB(t)dt=hSHB(t)τSHBεSHBκτSHB[ehtotal(t)1]P(t)dhl(t)dtdhCH(t)dt,
ϕ(t)=12[αhd(t)+αCHhCH(t)]12βα2S(t)L,
PA,B(t)=n=+anA,B2ln2P0πτFWHMexp(4ln2(tnT)2τFWHM2),

Metrics