Abstract

Metallo-dielectric superlenses transfer subwavelength-scale information without magnification. The so-called hyperlenses additionally magnify, transferring images into traditional far-field optics. We target hyperlenses based on the “canalization” phenomenon in an array of wires, modified to form an open fan, also called “endoscope.” We use an integrated optics design with silicon wires, fed for instance by grating couplers, accessing gold wire fans. This alleviates the need to care for wire length. We explore a regime where we do not only image a near-field source, but where we image illuminated nano-objects, as done in microscopy, light being fed by a second fan before the object plane. In order to counter the low contrast from illuminated nano-objects, we propose here a dark-field hyperlens concept: We show that the illumination fan can be fed so as to get a dark output for a “void” object field, as occurs in the eponym microscopy method. We obtain, at a wavelength as large as 1200 nm, a well-resolved imaging capability for a scene of two 30 nm silicon particles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  4. Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [CrossRef]
  5. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
    [CrossRef]
  6. M. G. Silveirinha, P. A. Belov, and C. R. Simosvski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).
    [CrossRef]
  7. A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
    [CrossRef]
  8. A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
    [CrossRef]
  9. A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
    [CrossRef]
  10. A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010).
    [CrossRef]
  11. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
    [CrossRef]
  12. P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
    [CrossRef]
  13. P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
    [CrossRef]
  14. P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
    [CrossRef]
  15. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
    [CrossRef]
  16. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
    [CrossRef]
  17. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
    [CrossRef]
  18. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006).
    [CrossRef]
  19. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  20. P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
    [CrossRef]
  21. Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).
    [CrossRef]
  22. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
    [CrossRef]
  23. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
    [CrossRef]
  24. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [CrossRef]
  25. V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
    [CrossRef]
  26. A. M. H. Wong and G. V. Eleftheriades, “Advances in imaging beyond the diffraction limit,” in Breakthroughs in Photonics 2011, IEEE Photon. J.4, 561–656 (2012).
    [CrossRef]
  27. M. W. Davidson, “Darkfield Illumination” (National High Magnetic Field Laboratory, 2012), retrieved micro.magnet.fsu.edu/primer/techniques/darkfield.html .
  28. F. V. Ignatovitch and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
    [CrossRef]
  29. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
    [CrossRef]
  30. F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011).
    [CrossRef]
  31. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
    [CrossRef]
  32. H. Liu and K. J. Webb, “Resonance cones in cylindrically anisotropic metamaterials: a Green’s function analysis,” Opt. Lett. 36, 379–381 (2011).
    [CrossRef]
  33. H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging with nonmagnetic anisotropic bilayers,” Opt. Lett. 34, 2243–2245 (2009).
  34. L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012).
    [CrossRef]
  35. F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27, 417–425 (2009).
    [CrossRef]
  36. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [CrossRef]
  37. T. Stomeo, F. Van Laere, M. Ayre, C. Cambournac, H. Benisty, D. Van Thourhout, R. Baets, and T. F. Krauss, “Integration of grating couplers with a compact photonic crystal demultiplexer on an InP membrane,” Opt. Lett. 33, 884–886 (2008).
    [CrossRef]
  38. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
    [CrossRef]
  39. R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
    [CrossRef]
  40. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [CrossRef]
  41. R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
    [CrossRef]
  42. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35, 502–504 (2010).
    [CrossRef]
  43. A. Klekamp and R. Münzner, “Calculation of imaging errors of AWG,” J. Lightwave Technol. 21, 1978–1986 (2003).
    [CrossRef]
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  45. S. Huang, H. Wang, K.-H. Ding, and L. Tsang, “Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface,” Opt. Lett. 37, 1295–1297 (2012).
    [CrossRef]
  46. H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

2012 (2)

L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012).
[CrossRef]

S. Huang, H. Wang, K.-H. Ding, and L. Tsang, “Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface,” Opt. Lett. 37, 1295–1297 (2012).
[CrossRef]

2011 (5)

H. Liu and K. J. Webb, “Resonance cones in cylindrically anisotropic metamaterials: a Green’s function analysis,” Opt. Lett. 36, 379–381 (2011).
[CrossRef]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[CrossRef]

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011).
[CrossRef]

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

2010 (5)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35, 502–504 (2010).
[CrossRef]

2009 (9)

Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).
[CrossRef]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
[CrossRef]

F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27, 417–425 (2009).
[CrossRef]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[CrossRef]

H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging with nonmagnetic anisotropic bilayers,” Opt. Lett. 34, 2243–2245 (2009).

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

2008 (3)

2007 (4)

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef]

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

2006 (7)

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

F. V. Ignatovitch and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

2005 (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

2003 (1)

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alekseyev, L.

L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012).
[CrossRef]

Alomainy, A.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

Ayre, M.

Baets, R.

Bartal, G.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

Belkebir, K.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Belov, P.

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

Belov, P. A.

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
[CrossRef]

A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
[CrossRef]

Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simosvski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006).
[CrossRef]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Benisty, H.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Brehm, M.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[CrossRef]

Brenot, R.

F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27, 417–425 (2009).
[CrossRef]

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Cambournac, C.

Carrara, D.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Chaumet, P. C.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Cheben, P.

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[CrossRef]

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dan-Xia, X.

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Davidson, M. W.

M. W. Davidson, “Darkfield Illumination” (National High Magnetic Field Laboratory, 2012), retrieved micro.magnet.fsu.edu/primer/techniques/darkfield.html .

Debrégeas, H.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Decobert, J.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Ding, K.-H.

Drsek, F.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Eleftheriades, G. V.

A. M. H. Wong and G. V. Eleftheriades, “Advances in imaging beyond the diffraction limit,” in Breakthroughs in Photonics 2011, IEEE Photon. J.4, 561–656 (2012).
[CrossRef]

Elezzabi, A. Y.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Fink, M.

F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011).
[CrossRef]

Fok, L.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

Giovannini, H.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Girard, J.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Guillamet, R.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Halir, R.

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[CrossRef]

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Han, Z.

Hao, Y.

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
[CrossRef]

A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).
[CrossRef]

P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Hillenbrand, R.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[CrossRef]

Huang, S.

Ignatovitch, F. V.

F. V. Ignatovitch and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

Ikonen, P.

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Janz, S.

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[CrossRef]

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Kato, J.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kawata, S.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kazmierski, C.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Keilmann, F.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[CrossRef]

Khurgin, J.

L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012).
[CrossRef]

Klekamp, A.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Konan, D.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Kosulnikov, S. Y.

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

Krauss, T. F.

Lagay, N.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Lamontagne, B.

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Lemoult, F.

F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011).
[CrossRef]

Lerosey, G.

F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011).
[CrossRef]

Li, J.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Liu, H.

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Maire, G.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Maradudin, A. A.

V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Molina-Fernandez, I.

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Molina-Fernández, Í.

Münzner, R.

Narimanov, E.

L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012).
[CrossRef]

Novotny, L.

F. V. Ignatovitch and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Ono, A.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Ortega-Monux, A.

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

Ortega-Moñux, A.

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Palikaras, G. K.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

Parini, C.

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Patard, O.

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Pendry, J. B.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Rahman, A.

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

Roelkens, G.

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27, 417–425 (2009).
[CrossRef]

Sarychev, A.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef]

Sentenac, A.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Shivanand,

Shvets, G.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef]

Silveirinha, M. G.

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simosvski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

Simosvski, C. R.

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simosvski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).
[CrossRef]

Simovski, C.

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

Simovski, C. R.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Siong, Y.

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Smolyaninov, I. I.

V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Stockman, M. I.

Stomeo, T.

Sudhakaran, S.

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Talneau, A.

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Taubner, T.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[CrossRef]

Trendafilov, S.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef]

Tretyakov, S.

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

Tsang, L.

TSe, S.

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Van, V.

Van Laere, F.

Van Thourhout, D.

van Tourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Wang, H.

Wanguemert-Perez, J. G.

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

Wangüemert-Pérez, J. G.

Webb, K. J.

Wong, A. M. H.

A. M. H. Wong and G. V. Eleftheriades, “Advances in imaging beyond the diffraction limit,” in Breakthroughs in Photonics 2011, IEEE Photon. J.4, 561–656 (2012).
[CrossRef]

Xu, D.-X.

Yin, X.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

Zayats, V. Z.

V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Zhang, X.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Zhao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
[CrossRef]

Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).
[CrossRef]

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime,” Appl. Phys. Lett. 91, 104102 (2007).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905(2010).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006).
[CrossRef]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104(2009).
[CrossRef]

L. Alekseyev, E. Narimanov, and J. Khurgin, “Super-resolution spatial frequency differentiation of nanoscale particles with a vibrating nanograting,” Appl. Phys. Lett. 100, 011101 (2012).
[CrossRef]

IEEE J. Lightw. Technol. (1)

R. Halir, A. Ortega-Moñux, I. Molina-Fernandez, J. G. Wanguemert-Perez, P. Cheben, X. Dan-Xia, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon on insulator,” IEEE J. Lightw. Technol. 27, 5405–5409 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Nanophoton. (1)

A. Rahman, S. Y. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, “Subwavelength optical imaging with an array of silver nanorods,” J. Nanophoton. 5, 051601 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

Y. Zhao, P. A. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. van Tourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[CrossRef]

Nano Lett. (1)

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6, 1307–1310 (2006).
[CrossRef]

Nat. Mater. (1)

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931–934 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (9)

S. Huang, H. Wang, K.-H. Ding, and L. Tsang, “Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface,” Opt. Lett. 37, 1295–1297 (2012).
[CrossRef]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
[CrossRef]

H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging with nonmagnetic anisotropic bilayers,” Opt. Lett. 34, 2243–2245 (2009).

A. Rahman, P. A. Belov, Y. Hao, and C. Parini, “Periscope-like endoscope for transmission of a near field in the infrared range,” Opt. Lett. 35, 142–144 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35, 502–504 (2010).
[CrossRef]

H. Liu and K. J. Webb, “Resonance cones in cylindrically anisotropic metamaterials: a Green’s function analysis,” Opt. Lett. 36, 379–381 (2011).
[CrossRef]

T. Stomeo, F. Van Laere, M. Ayre, C. Cambournac, H. Benisty, D. Van Thourhout, R. Baets, and T. F. Krauss, “Integration of grating couplers with a compact photonic crystal demultiplexer on an InP membrane,” Opt. Lett. 33, 884–886 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simosvski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, “Enhancement of evanescent spatial harmonics inside of materials with extreme optical anisotropy,” Opt. Lett. 34, 527–529 (2009).
[CrossRef]

Phys. Rep. (1)

V. Z. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Phys. Rev. B (7)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73, 033108 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

P. A. Belov, Y. Zhao, S. TSe, P. Ikonen, M. G. Silveirinha, C. R. Simosvski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

A. Rahman, P. A. Belov, and Y. Hao, “Tailoring silver nanorod arrays for subwavelength imaging of arbitrary coherent sources,” Phys. Rev. B 82, 113408 (2010).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

Phys. Rev. E (1)

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

F. V. Ignatovitch and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field control of sound on a subwavelength scale,” Phys. Rev. Lett. 107, 064301 (2011).
[CrossRef]

G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009).
[CrossRef]

Proc. SPIE (1)

R. Halir, G. Roelkens, A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, “High performance multimode interference couplers for coherent communications in silicon,” Proc. SPIE 800780071B–80077 (2011).
[CrossRef]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Z. Liu, H. Lee, Y. Siong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Other (4)

A. M. H. Wong and G. V. Eleftheriades, “Advances in imaging beyond the diffraction limit,” in Breakthroughs in Photonics 2011, IEEE Photon. J.4, 561–656 (2012).
[CrossRef]

M. W. Davidson, “Darkfield Illumination” (National High Magnetic Field Laboratory, 2012), retrieved micro.magnet.fsu.edu/primer/techniques/darkfield.html .

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

H. Debrégeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, and R. Brenot, “Selective-area-growth technology for flexible active building blocks,” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2012), p. IM2A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Common and proposed microscopy principles: (a) SNOM scans a subwavelength-sized tip on the objects; (b) subwavelength imaging makes use of canalization along metal wires without or with magnification (with a fan of wires), or of rolled hyperbolic materials; (c) dark-field microscopy uses oblique illumination not detected in direct path, and captures scattered light only; (d) the proposed dark-field hyperlens aims at implementing the same principle between two fans of wires.

Fig. 2.
Fig. 2.

(a) Fan of metallic tips addressing a central “object plane,” where particle detection is desired, at subwavelength scale. (b) The fan of seven tips can be addressed through six silicon wires #1#6. Light in these wires can further be in- or out-coupled in the far-field and the outside world through gratings on them. (c) Magnification of the dashed rectangle area indicated in (b): transition between the metal and silicon parts. The field is confined between the metal tips (the so-called MIM configuration) and this information is further transferred to the quasi-TM modes of the silicon wires, whose field is also prominent outside them.

Fig. 3.
Fig. 3.

(a) Principle of the dark field configuration: the illumination is coherent in the six wires. In an ideal structure it would be antisymmetrical. In an imperfect structure, the field phases and amplitude are adjusted so as to minimize the field of the four central exit channels, not constraining light in the two outer tips. (b) Spectro-imaging color map of output fluxes versus wavenumber. If fields are adjusted for a single wavelength (here λ=1200nm), the field remains “dark” in a spectral region of 1–2% width. Minimization is seen to be imperfect for tip #5 on account of its proximity with the brightest channel.

Fig. 4.
Fig. 4.

(a) Reference configuration: a single particle is scanned through the “object plane,” with a 5 nm step, yielding N1 complex “images” that are read at the 4 exit channels. (b) Situation used to probe hyperlens dark-field imaging: one particle P1 moving as in the reference case, the other particle P2 immobilized at 5 nm above the y=0 axis.

Fig. 5.
Fig. 5.

Hyperlens field modulus |E| at the 6 exit tips at λdark in a color map for a single Si particle, as a function of particle position. The dashed tilted line represents the expected “geometric” image position, going linearly from one extreme to the other extreme tip of the field.

Fig. 6.
Fig. 6.

Self correlation of single-particle fields, peaking at unity on the diagonal.

Fig. 7.
Fig. 7.

Hyperlens field modulus |E| at the 6 exit tips at λdark, in a color map, for two Si particles, as a function of particle position. The dashed lines grossly represent the two expected “geometric” image positions, which may substantially differ from the signal peaks (see Fig. 5).

Fig. 8.
Fig. 8.

Particle position retrieval (a) estimator Ij of the presence of two particles from the coherent projection onto two superposed one-particle “images.” The fixed particle and the moving particle can easily be recognized. (b) Plot of positions associated to the four best quantities B; see Eq. (4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y^=argmaxj[E⃗+E⃗(yj)],
A(yj1,yj2)=E⃗+(yj1)E⃗(yj2).
E⃗superposed(y1,y2)=E⃗(y1)+E⃗(y2).
B(y1,y2,y1,y2)=|E⃗superposed(y1,y2)+E⃗two,actual(y1,y2)|=|[E⃗(y1)+E⃗(y2)]+E⃗two,actual(y1,y2)|.

Metrics