Abstract

The modulation of spontaneous light emission of active centers through elastic waves in Si/SiO2 multilayer phoxonic structures that support dual photonic-phononic localized modes, in the bulk or at the surface, is studied by means of rigorous full electrodynamic and elastodynamic calculations. Our results show that strong dynamic modulation of the spontaneous emission can be achieved through an enhanced acousto-optic interaction when light and elastic energy are simultaneously localized in the same region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [CrossRef]
  2. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
    [CrossRef]
  3. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
    [CrossRef]
  4. S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003).
    [CrossRef]
  5. M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004).
    [CrossRef]
  6. A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E 72, 056609 (2005).
    [CrossRef]
  7. X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007).
    [CrossRef]
  8. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
    [CrossRef]
  9. H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
    [CrossRef]
  10. S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
    [CrossRef]
  11. V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
    [CrossRef]
  12. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
    [CrossRef]
  13. C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
    [CrossRef]
  14. N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006).
    [CrossRef]
  15. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17, 7479–7490 (2009).
    [CrossRef]
  16. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express 17, 304–313 (2009).
    [CrossRef]
  17. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. de Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
    [CrossRef]
  18. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
    [CrossRef]
  19. C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
    [CrossRef]
  20. A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
    [CrossRef]
  21. H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
    [CrossRef]
  22. S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
    [CrossRef]
  23. J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
    [CrossRef]
  24. J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003).
    [CrossRef]
  25. J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t),” Phys. Rev. A 79, 053821 (2009).
    [CrossRef]
  26. N. V. Budko, “Electromagnetic radiation in a time-varying background medium,” Phys. Rev. A 80, 053817 (2009).
    [CrossRef]
  27. J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t),” Phys. Rev. A 81, 053834 (2010).
    [CrossRef]
  28. M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [CrossRef]
  29. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [CrossRef]
  30. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [CrossRef]
  31. I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
    [CrossRef]
  32. N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
    [CrossRef]
  33. J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
    [CrossRef]
  34. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [CrossRef]
  35. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
    [CrossRef]
  36. R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
    [CrossRef]
  37. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

2012 (2)

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

2011 (4)

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

2010 (6)

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t),” Phys. Rev. A 81, 053834 (2010).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

2009 (6)

2008 (3)

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

2007 (2)

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007).
[CrossRef]

2006 (1)

N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006).
[CrossRef]

2005 (2)

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E 72, 056609 (2005).
[CrossRef]

R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
[CrossRef]

2004 (1)

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004).
[CrossRef]

2003 (2)

S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003).
[CrossRef]

J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003).
[CrossRef]

2002 (1)

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

1993 (1)

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

1991 (1)

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Abstreiter, G.

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Akimov, A. V.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Anderson, D.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Andreani, L. C.

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Aspelmeyer, M.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Atkinson, P.

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Atwater, H. A.

Bajoni, D.

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Bayer, M.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Beaudoin, G.

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Bennett, A. J.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Berstermann, T.

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Beveratos, A.

Bichler, M.

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Björk, G.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Bloch, J.

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Bombeck, M.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

Bonello, B.

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

Bouwmeester, D.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

Braive, R.

Briggs, R. M.

Brongersma, M. L.

Brueck, S. R. J.

S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003).
[CrossRef]

Brüggemann, C.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

Brunstein, M.

Budko, N. V.

N. V. Budko, “Electromagnetic radiation in a time-varying background medium,” Phys. Rev. A 80, 053817 (2009).
[CrossRef]

Camacho, R. M.

M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef]

Cervantes-González, J. C.

J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t),” Phys. Rev. A 79, 053821 (2009).
[CrossRef]

Chan, J.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef]

Chang, W. H.

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

Chen, X. W.

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007).
[CrossRef]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

Choy, W. C. H.

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007).
[CrossRef]

Creatore, C.

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

de Lima, J. M. M.

J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003).
[CrossRef]

de Wilde, Y.

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Dewhurst, S. J.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Djafari-Rouhani, B.

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

Eich, M.

Eichenfeld, M.

M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef]

Eliseev, P. G.

S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003).
[CrossRef]

Ellis, D. J. P.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Farrer, I.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Finley, J. J.

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Forchel, A.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Fuhrmann, D. A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Gell, J. R.

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Granados, D.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Gröblacher, S.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Halevi, P.

J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t),” Phys. Rev. A 81, 053834 (2010).
[CrossRef]

J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t),” Phys. Rev. A 79, 053821 (2009).
[CrossRef]

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E 72, 056609 (2005).
[CrossRef]

He, S.

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007).
[CrossRef]

Hey, R.

J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003).
[CrossRef]

Hill, J. T.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Höfling, S.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

Hostein, R.

Hughes, S.

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

Hunt, N. E. J.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

Igeta, K.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Jacobson, D. C.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

Jones, G. A. C.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Jun, Y. C.

Karle, T. J.

Kim, H.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Kinzel, J. B.

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Knall, F.

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Koblmüller, G.

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Krause, A.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Krenner, H. J.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Lagendijk, A.

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004).
[CrossRef]

Lai, W. C.

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

Laude, V.

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

Lee, Y. S.

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

Levenson, J. A.

Lin, C. H.

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

Lin, H.

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

Lin, S. D.

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

Liu, N. H.

N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006).
[CrossRef]

Machida, S.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

Mayer Alegre, T. P.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Modinos, A.

R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Moreau, V.

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Painter, O.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef]

Papanikolaou, N.

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

Patel, R. B.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Petroff, P. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Petrov, A.

Poate, J. M.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

Psarobas, I. E.

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Reuter, D.

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Ritchie, D. A.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Robert-Philip, I.

Rudolph, D.

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Safavi-Naeini, A. H.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Sagnes, I.

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. de Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[CrossRef]

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Sainidou, R.

R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
[CrossRef]

Sánchez, A. S.

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E 72, 056609 (2005).
[CrossRef]

Sandoghdar, V.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef]

Santos, P. V.

J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003).
[CrossRef]

Scherbakov, A. V.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Schneider, C.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

Schniepp, H.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef]

Schubert, E. F.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

Schülein, F. J. R.

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Shields, A. J.

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Shields, J.

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Smagley, V. A.

S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003).
[CrossRef]

Stefanou, N.

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Stevenson, R. M.

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Suttorp, L. G.

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004).
[CrossRef]

Tessier, G.

Thon, S. M.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

Truong, T. A.

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Vahala, K. J.

M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef]

Völk, S.

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Vredenberg, A. M.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

Ward, M. B.

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Wieck, A. D.

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Wixforth, A.

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

Wubs, M.

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004).
[CrossRef]

Wülbern, J. H.

Xu, J. P.

N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006).
[CrossRef]

Yacomotti, A. M.

Yakovlev, D. R.

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

Yamamoto, Y.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Young, R. J.

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

Zhu, S. Y.

N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006).
[CrossRef]

Zurita-Sánchez, J. R.

J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t),” Phys. Rev. A 81, 053834 (2010).
[CrossRef]

J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t),” Phys. Rev. A 79, 053821 (2009).
[CrossRef]

Zydzik, G. J.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

Appl. Phys. Lett. (3)

J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003).
[CrossRef]

J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008).
[CrossRef]

S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010).
[CrossRef]

Comput. Phys. Commun. (3)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005).
[CrossRef]

J. Disp. Technol. (1)

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007).
[CrossRef]

Microelectron. Eng. (1)

N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012).
[CrossRef]

Nano Lett. (2)

S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010).
[CrossRef]

J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011).
[CrossRef]

Nat. Photon. (2)

D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011).
[CrossRef]

C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012).
[CrossRef]

Nature (2)

M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. A (5)

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t),” Phys. Rev. A 79, 053821 (2009).
[CrossRef]

N. V. Budko, “Electromagnetic radiation in a time-varying background medium,” Phys. Rev. A 80, 053817 (2009).
[CrossRef]

J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t),” Phys. Rev. A 81, 053834 (2010).
[CrossRef]

Phys. Rev. B (4)

A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008).
[CrossRef]

H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011).
[CrossRef]

N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006).
[CrossRef]

I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010).
[CrossRef]

Phys. Rev. E (3)

S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003).
[CrossRef]

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004).
[CrossRef]

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E 72, 056609 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef]

V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Science (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Other (1)

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic view of a one-dimensional Si/SiO2 multilayer cavity. A dipole emitter is placed in a SiO2 defect layer, of thickness 2a. Five periods of alternating Si (thickness a/3) and SiO2 (thickness 2a/3) layers, on both sides of the defect, act as Bragg mirrors for both photons and phonons and create a phoxonic cavity. (b) Photonic dispersion diagram of the structure of (a). The thick straight line is the light line in SiO2. Above the light line, white areas indicate gap regions over which transmission is vanishingly small, and gray regions correspond to finite transmission, while a transmittance close to unity is calculated for the cavity modes. Below the light line, we display the dispersion diagram of the slab eigenmodes. (c) Average normalized power emitted away from the multilayer slab shown in (a) in the SiO2 host, for a dipole emitter placed at the center of the defect layer (black line) and at a distance Δz=a/2 away from the center (gray line).

Fig. 2.
Fig. 2.

(a) Transmission spectrum of a compressional elastic wave incident normally on the multilayer structure of Fig. 1(a). (b) Displacement amplitude profile, normalized to the input displacement level, at the resonance frequency Ωon=3.466cl,SiO2/a (solid line) and at an off-resonance frequency Ωoff=2.857cl,SiO2/a (dotted line), indicated by the arrows in (a). (c) A snapshot of the corresponding strain fields.

Fig. 3.
Fig. 3.

(a) Modulation of the average normalized power, emitted away from the multilayer slab of Fig. 1(a) in the SiO2 host by a dipole emitter placed at the center of the defect layer, under elastic excitation at two different frequencies. The dotted line corresponds to the static case and is a zoom of Fig. 1(c), while the solid lines correspond to snapshots under the influence of the elastic field at which maximum changes are obtained. Black line: elastic wave at resonance. Gray line: elastic wave off-resonance (see Fig. 2). (b) Temporal variation of the emitted light power at a/λ=0.19287 over a period of the resonant elastic excitation for a randomly oriented dipole at three different positions in the SiO2 defect layer: at the center (solid line), at a distance Δz=a/2 from the center (dashed line), and at a distance Δz=a from the center, i.e., at the defect layer surface (short-dash line).

Fig. 4.
Fig. 4.

(a) Schematic view of a Si/SiO2 multilayer slab with a slot waveguide structure on top of a nine-period Bragg mirror (for the geometrical parameters see text) on a SiO2 substrate. (b) Photonic dispersion diagram of the structure of (a). The thick straight line is the light line in SiO2. The TM surface state is indicated with the green color. (c) Normalized power emitted away from the multilayer slab of (a) in the SiO2 host and air (gray dotted line) and trapped into the slot waveguide (black line), for a normal dipole emitter placed at the center of the thin SiO2 layer in the slot waveguide.

Fig. 5.
Fig. 5.

A compressional elastic wave is incident normal to the multilayer structure of Fig. 4(a) from the SiO2 substrate. (a) Displacement amplitude profile, normalized to the input displacement level, at the resonance frequency Ωon=4.005cl,SiO2/a (solid line) and at an off-resonance, frequency Ωoff=1.878cl,SiO2/a (dotted line). (b) A snapshot of the corresponding strain fields.

Fig. 6.
Fig. 6.

Modulation of the normalized power, trapped by the surface mode [Pnr: second term of Eq. (A11)] of the multilayer slab of Fig. 4(a) for a normal dipole emitter at the center of the thin SiO2 layer, under elastic excitation at two different frequencies. The dotted line corresponds to the static case and is a zoom of Fig. 4(c), while the solid lines correspond to snapshots under the influence of the elastic field at which maximum changes are obtained. Black line: elastic wave at resonance. Gray line: elastic wave off-resonance (see Fig. 5).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

c2ϵμ××Ed(r)ω2Ed(r)=ω2ϵϵ0pdδ(rrd)Hd(r)=iωμμ0×Ed(r),
Ed(r)=ω2ϵϵ0G(r,rd)pd,
c2ϵμ××G(r,r)ω2G(r,r)=Iδ(rr),
G(r,r)=iϵμ8π2c2d2qeiq±·(rr)q2q2p=12e^p(q±)e^p(q±),
Ed(r)=d2q(2πq)2eiq±·(rrd)p=12Ed;p±e^p(q±),
Ed;p±=iq4pd2ϵϵ0q2q2e^p(q±)·p^d.
ER;p+=Ed;p++QL;pIIQR;pIIIEd;p++QL;pIIQR;pIIIQL;pIIQR;pIIIEd;p+++QL;pIIEd;p+QL;pIIQR;pIIIQL;pIIEd;p+QL;pIIQR;pIIIQL;pIIQR;pIIIQL;pIIEd;p+=(1QL;pIIQR;pIII)1(Ed;p++QL;pIIEd;p),
ER;p=QR;pIIIER;p+
EL;p=Ed;p+QR;pIIIQL;pIIEd;p+QR;pIIIQL;pIIQR;pIIIQL;pIIEd;p++QR;pIIIEd;p++QR;pIIIQL;pIIQR;pIIIEd;p++QR;pIIIQL;pIIQR;pIIIQL;pIIQR;pIIIEd;p++=(1QR;pIIIQL;pII)1(Ed;p+QR;pIIIEd;p+),
EL;p+=QL;pIIEL;p
PR=18π2q5ϵϵ0μμ0d2qp=12[ER;p+2ER;p2]×Req2q22Im[ER;p+ER;p*]Imq2q2
PRout=18π2q5ϵϵ0μμ0d2qp=12ER;pout2Req2q2
P0r=cq4pd212πϵϵ0ϵμ.
q=Γout/Γ0rΓ/Γ0r+q011=Pout/P0rP/P0r+q011,

Metrics