Abstract

We study the rich dynamics of dissipative spatial solitons in optical media described by the complex Ginzburg–Landau equation in the presence of periodic, sinusoidal-type spatially inhomogeneous losses. It is revealed that in the case when the soliton is launched at the point where the periodic spatial modulation loss profile has its zero value, the gradient force of the inhomogeneous loss easily induces three generic propagation scenarios: (a) soliton transverse drift, (b) persistent swing around the soliton input launching position, and (c) damped oscillations near or even far from the input position. The soliton exhibiting damped oscillations eventually evolves into a stable one, whose output position can be controlled by the amplitude of the inhomogeneous loss profile. Conversely, when the launching point coincides with an extremum (a maximum or a minimum) of the sinusoidal-type loss landscape, both soliton transverse drift and soliton damped oscillations occur due to transverse modulation instability. Moreover, in this case, depending on the balance between the amplitude of the inhomogeneous loss modulation profile and the homogeneous linear loss coefficient, either the launched soliton can maintain its stable propagation at the input position or a stable plump dissipative soliton can be formed while preserving the launching point.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription