Abstract

Tightly confined plasmon waveguide modes supported by semicircular cross section top silver nanoridges are investigated. Mode field profiles, dispersion curves, propagation distances, confinement factors, and figures-of-merit of the semicircular top silver nanoridge plasmon waveguide mode are calculated for different radii of curvature at different wavelengths. It is found that semicircular top silver nanoridges support tightly confined quasi-transverse electromagnetic (TEM) and quasi-cylindrical plasmon waveguide modes. The surface plasmon mode of a semicircular top silver nanoridge waveguide has longer propagation distance and higher figure-of-merit than the surface plasmon mode of a cylindrical silver nanowire of the same radius of curvature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  3. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  4. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  5. A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
    [CrossRef]
  6. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8, 383–385 (1983).
    [CrossRef]
  7. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [CrossRef]
  8. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
    [CrossRef]
  9. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  10. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
    [CrossRef]
  11. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
    [CrossRef]
  12. A. Degiron and D. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
    [CrossRef]
  13. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
    [CrossRef]
  14. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
    [CrossRef]
  15. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
    [CrossRef]
  16. R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G–66418 (2007).
    [CrossRef]
  17. J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
    [CrossRef]
  18. Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
    [CrossRef]
  19. R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
    [CrossRef]
  20. R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
    [CrossRef]
  21. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
    [CrossRef]
  22. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef]
  23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef]
  24. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
    [CrossRef]
  25. Y. Satuby and M. Orenstein, “Surface plasmon-polariton modes in deep metallic trenches-measurement and analysis,” Opt. Express 15, 4247–4252 (2007).
    [CrossRef]
  26. E. Feigenbaum and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007).
    [CrossRef]
  27. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
    [CrossRef]
  28. A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
    [CrossRef]
  29. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
    [CrossRef]
  30. E. Feigenbaum and M. Orenstein, “Nano plasmon polariton modes of a wedge cross section metal waveguide,” Opt. Express 14, 8779–8784 (2006).
    [CrossRef]
  31. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef]
  32. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
    [CrossRef]
  33. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [CrossRef]
  34. J. Dintinger and O. J. Martin, “Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,” Opt. Express 17, 2364–2374 (2009).
    [CrossRef]
  35. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  36. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  37. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
    [CrossRef]
  38. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [CrossRef]
  39. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009).
    [CrossRef]
  40. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (1994).
    [CrossRef]
  41. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
    [CrossRef]
  42. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
    [CrossRef]
  43. R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
    [CrossRef]
  44. H. Yamamoto, “Surface plasmon modes of curved thin metal films and curved cylindrical metal nanowires,” M. S. thesis (University of Alabama in Huntsville, 2011).
  45. A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85, 045407 (2012).
    [CrossRef]
  46. Z. Pan, J. Guo, R. Soref, W. Buchwald, and G. Sun, “Mode properties of flat-top silver nanoridge surface plasmon waveguides,” J. Opt. Soc. Am. B 29, 340–345 (2012).
    [CrossRef]
  47. Z. Pan, J. Guo, R. Soref, W. Buchwald, and G. Sun, “Guided plasmon modes of triangular and inverted triangular cross-section silver nanoridges,” J. Opt. Soc. Am. B 29, 950–958 (2012).
    [CrossRef]
  48. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
    [CrossRef]
  49. Z. Pan, J. Guo, R. Soref, and W. Buchwald, “Guided plasmon modes of elliptical cross section silver nanoridges,” IEEE J. Lightwave Technol. early posting (2012).
  50. Z. Hu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).
  51. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  52. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
    [CrossRef]
  53. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
    [CrossRef]
  54. S.-Y. Cho and R. A. Soref, “Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications,” Opt. Lett. 34, 1759–1761 (2009).
    [CrossRef]
  55. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  56. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [CrossRef]
  57. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
    [CrossRef]

2012

2010

2009

2008

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[CrossRef]

2007

2006

2005

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

2004

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2002

2001

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

2000

1999

1994

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (1994).
[CrossRef]

1991

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

1983

1981

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Adato, R.

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
[CrossRef]

J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
[CrossRef]

R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G–66418 (2007).
[CrossRef]

R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef]

Aers, G. C.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Atwater, H. A.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Berini, P.

Berolo, E.

Boardman, A. D.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Boltasseva, A.

Boreman, G. D.

Bozhevolnyi, S. I.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Brongersma, M. L.

Brown, T. G.

Buchwald, W.

Buchwald, W. R.

Buckley, R.

Burgos, S. P.

Burke, J. J.

Catrysse, P. B.

Chandran, A.

Charbonneau, R.

Chen, Z.

Cheng, W.

Chichkov, B. N.

Cho, S.-Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cleary, J. W.

Craig, A. E.

de Abajo, F. J. G.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

de Waele, R.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Degiron, A.

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Dintinger, J.

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85, 045407 (2012).
[CrossRef]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Drehman, A.

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Evlyukhin, A. B.

Feigenbaum, E.

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Fukui, M.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Gordon, R.

Gramotnev, D. K.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef]

Guo, J.

Hafner, C.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (1994).
[CrossRef]

Hall, D. G.

Haraguchi, M.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Holmgaard, T.

Hu, Z.

Ishigami, M.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Krasavin, A. V.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Lezec, H. J.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Lisicka-Shrzek, E.

Markey, L.

Martin, O. J.

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Moreno, E.

Nielsen, R. B.

Novotny, L.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (1994).
[CrossRef]

Ogawa, T.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Okamoto, T.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Olson, G. A.

Orenstein, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Pan, Z.

Peale, R. E.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef]

Polman, A.

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Qiu, M.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Reinhardt, C.

Rodrigo, S. G.

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85, 045407 (2012).
[CrossRef]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Sarid, D.

A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Satuby, Y.

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Seidel, A.

Selker, M. D.

Shelton, D. J.

Smith, C. W.

Smith, D.

Soref, R.

Soref, R. A.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Stegeman, G. I.

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Sun, G.

Sun, Z.

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
[CrossRef]

Teshima, R.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Volkov, V. S.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Yamamoto, H.

H. Yamamoto, “Surface plasmon modes of curved thin metal films and curved cylindrical metal nanowires,” M. S. thesis (University of Alabama in Huntsville, 2011).

Yan, M.

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Zia, R.

Appl. Phys. Lett.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

J. Appl. Phys.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104, 033102 (2008).
[CrossRef]

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Photon.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express

R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
[CrossRef]

J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
[CrossRef]

A. Degiron and D. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
[CrossRef]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

J. Dintinger and O. J. Martin, “Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,” Opt. Express 17, 2364–2374 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

E. Feigenbaum and M. Orenstein, “Nano plasmon polariton modes of a wedge cross section metal waveguide,” Opt. Express 14, 8779–8784 (2006).
[CrossRef]

R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
[CrossRef]

R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18, 12770–12778 (2010).
[CrossRef]

Y. Satuby and M. Orenstein, “Surface plasmon-polariton modes in deep metallic trenches-measurement and analysis,” Opt. Express 15, 4247–4252 (2007).
[CrossRef]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[CrossRef]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef]

Z. Hu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85, 045407 (2012).
[CrossRef]

Phys. Rev. E

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (1994).
[CrossRef]

Phys. Rev. Lett.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Proc. SPIE

R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G–66418 (2007).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

H. Yamamoto, “Surface plasmon modes of curved thin metal films and curved cylindrical metal nanowires,” M. S. thesis (University of Alabama in Huntsville, 2011).

Z. Pan, J. Guo, R. Soref, and W. Buchwald, “Guided plasmon modes of elliptical cross section silver nanoridges,” IEEE J. Lightwave Technol. early posting (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) 3D view of the semicircular cross section nanoridge plasmon waveguide; (b) cross section of the semicircular cross section nanoridge waveguide.

Fig. 2.
Fig. 2.

Mode profiles of a semicircular silver nanoridge with r=250nm at 1.55 μm wavelength: (a) real part of the electric field Er; (b) real part of the electric field Eϕ; (c) imaginary part of the electric field Ez; (d) real part of the magnetic field Hr; (e) real part of the magnetic field Hϕ; (f) imaginary part of the magnetic field Hz.

Fig. 3.
Fig. 3.

Mode profiles of a cylindrical plasmon waveguide with r=250nm at 1.55 μm wavelength: (a) real part of the electric field Er; (b) real part of the electric field Eϕ; (c) imaginary part of the electric field Ez; (d) real part of the magnetic field Hr; (e) real part of the magnetic field Hϕ; (f) imaginary part of the magnetic field Hz.

Fig. 4.
Fig. 4.

Dispersion curves of the silver semicircular nanoridge plasmon waveguides of different radii and the comparison with the dispersion curve of the metal-air flat surface plasmon mode.

Fig. 5.
Fig. 5.

Real (solid) and imaginary (dashed) parts of the mode index of the semicircle nanoridge (black) and cylindrical plasmon waveguide (blue) versus the radius at 1.55 μm wavelength.

Fig. 6.
Fig. 6.

Propagation distance (solid line curves) and figure-of-merit (dashed line curves) of the semicircle top silver nanoridge (black) and cylindrical silver nanowire (blue) versus the radius at 1.55 μm wavelength.

Fig. 7.
Fig. 7.

(a) Real part and (b) imaginary part of the mode index of the semicircular nanoridge versus the wavelength for different radii and the comparison with those of the metal-air flat surface plasmon mode index.

Fig. 8.
Fig. 8.

(a) Propagation distance of the semicircular top nanoridge versus the free-space wavelength for different radii; (b) propagation distance of the semicircular top nanoridge mode versus the wavelength and the radius.

Fig. 9.
Fig. 9.

(a) Mode size of the semicircular nanoridge plasmon versus the free-space wavelength for several different radii; (b) mode size of the semicircular nanoridge plasmon waveguide versus the wavelength and radius.

Fig. 10.
Fig. 10.

(a) Confinement factor of the semicircular nanoridge plasmon mode versus the free-space wavelength for different radii; (b) confinement factor of the semicircular nanoridge mode versus the wavelength and radius.

Fig. 11.
Fig. 11.

(a) Figure-of-merit of the semicircular nanoridge versus the wavelength for several radii; (b) figure-of-merit of the semicircular silver nanoridge plasmon mode versus the wavelength and the radius of curvature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(βjα)2+(γjδ)2=εdko2,
FoM=(1/2α)/(1/δ)=δ/2α.
CF=λ/(1/δ)=λδ.

Metrics