Abstract

We explore the potential of versatile and efficient entangled photon pair generation by spontaneous parametric downconversion in Bragg reflection waveguides. By employing a quantum treatment of modes in channel waveguides, and by accounting for group velocity dispersion in the modes, the quantum state of the generated biphotons is realistically calculated. The pair production rate is predicted to reach 4×108pairs/s/nm/mW of pump light in a 2 mm-long structure, on par with or exceeding the performance of previously reported designs. This is attributable to an enhanced nonlinear interaction through tight mode confinement in the waveguide. Strategies for device performance optimization and phase matching wavelength tunability are outlined and numerically demonstrated. The proposed design platform is versatile and allows photon pair generation with controllable flux, bandwidth, Schmidt number, and degree of polarization entanglement. The possibility of monolithic integration with a diode laser pump offers a way to design an electrically pumped entangled photon source.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
    [CrossRef]
  2. G. Fujii, N. Namkata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
    [CrossRef]
  3. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
    [CrossRef]
  4. M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
    [CrossRef]
  5. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
    [CrossRef]
  6. M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).
  7. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
    [CrossRef]
  8. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
    [CrossRef]
  9. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
    [CrossRef]
  10. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
    [CrossRef]
  11. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
    [CrossRef]
  12. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
    [CrossRef]
  13. J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
    [CrossRef]
  14. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [CrossRef]
  15. A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
    [CrossRef]
  16. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
    [CrossRef]
  17. L. G. Helt, E. Y. Zhu, M. Liscidini, Li Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009).
    [CrossRef]
  18. X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
    [CrossRef]
  19. X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
    [CrossRef]
  20. A. Orieux, X. Caillet, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
    [CrossRef]
  21. B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
    [CrossRef]
  22. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [CrossRef]
  23. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  24. Mode Solutions, version 4.0, Lumerical Solutions, Inc. Available: http://www.lumerical.com .
  25. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  26. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
    [CrossRef]
  27. C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
    [CrossRef]
  28. S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15, 8770–8780 (2007).
    [CrossRef]
  29. A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B 76, 035339 (2007).
    [CrossRef]
  30. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008).
    [CrossRef]
  31. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
    [CrossRef]
  32. A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
    [CrossRef]
  33. J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
    [CrossRef]
  34. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007).
    [CrossRef]
  35. L. G. Helt, Z. S. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010).
    [CrossRef]
  36. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
    [CrossRef]
  37. T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
    [CrossRef]
  38. K. Seng Chiang and W. Peng Wong, “Theory of zero-birefringence multiple-quantum-well optical waveguides,” IEEE J. Quantum Electron. 35, 1554–1564 (1999).
    [CrossRef]
  39. W. Peng Wong and K. Seng Chiang, “Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides,” IEEE J. Quantum Electron. 37, 1138–1145(2001).
    [CrossRef]
  40. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
    [CrossRef]
  41. S. Gao and C. Yang, “Two channels of entangled twin photons generated by quasi-phase-matched spontaneous parametric down-conversion in periodically poled lithium niobate crystals,” J. Opt. Soc. Am. B 25, 734–740 (2008).
    [CrossRef]
  42. C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
    [CrossRef]
  43. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
    [CrossRef]

2012

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

2011

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

A. Orieux, X. Caillet, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
[CrossRef]

2010

2009

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

L. G. Helt, E. Y. Zhu, M. Liscidini, Li Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[CrossRef]

2008

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008).
[CrossRef]

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[CrossRef]

S. Gao and C. Yang, “Two channels of entangled twin photons generated by quasi-phase-matched spontaneous parametric down-conversion in periodically poled lithium niobate crystals,” J. Opt. Soc. Am. B 25, 734–740 (2008).
[CrossRef]

2007

2006

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
[CrossRef]

2004

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
[CrossRef]

2002

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

2001

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

W. Peng Wong and K. Seng Chiang, “Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides,” IEEE J. Quantum Electron. 37, 1138–1145(2001).
[CrossRef]

2000

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

1999

K. Seng Chiang and W. Peng Wong, “Theory of zero-birefringence multiple-quantum-well optical waveguides,” IEEE J. Quantum Electron. 35, 1554–1564 (1999).
[CrossRef]

1997

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Abolghasem, P.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Aitchison, J. S.

Alali, S.

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

Arjmand, A.

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Battle, P.

Beausoleil, R. G.

Berger, V.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Bijlani, B. J.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

Bonneau, D.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Bristow, A. D.

Caillet, X.

Calligaro, M.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Chak, P.

Chen, J.

Clark, A. S.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

De Rossi, A.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Dorenbos, S. N.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Ducci, S.

A. Orieux, X. Caillet, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[CrossRef]

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef]

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

Eberly, J. H.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

Eggleton, B. J.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Fan, J.

Favero, I.

Filloux, P.

Fiorentino, M.

Fujii, G.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[CrossRef]

Gao, S.

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Ginzburg, P.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008).
[CrossRef]

A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B 76, 035339 (2007).
[CrossRef]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Grice, W. P.

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Hadfield, R. H.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Han, J.

Han, Q.

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

Hayat, A.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008).
[CrossRef]

A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B 76, 035339 (2007).
[CrossRef]

Helmy, A. S.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
[CrossRef]

Helt, L. G.

Hendrych, M.

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

Humble, T. S.

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[CrossRef]

Inoue, S.

Iyer, R.

Kang, D.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

Kurimura, S.

Lanco, L.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

Law, C. K.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

Lemaître, A.

Leo, G.

A. Orieux, X. Caillet, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[CrossRef]

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef]

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Ling, A.

Liscidini, M.

Lobino, M.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Marangoni, M.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Marcadet, X.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Marshall, G. D.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Matthews, J. C. F.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).

Migdall, A.

Motoya, M.

Munro, M. W.

Nagle, J.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

Namkata, N.

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Natarajan, C. M.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

O’Brien, J. L.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[CrossRef]

Orenstein, M.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008).
[CrossRef]

A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B 76, 035339 (2007).
[CrossRef]

Orieux, A.

Ortiz, V.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Pearlman, A. J.

Peng Wong, W.

W. Peng Wong and K. Seng Chiang, “Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides,” IEEE J. Quantum Electron. 37, 1138–1145(2001).
[CrossRef]

K. Seng Chiang and W. Peng Wong, “Theory of zero-birefringence multiple-quantum-well optical waveguides,” IEEE J. Quantum Electron. 35, 1554–1564 (1999).
[CrossRef]

Politi, A.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).

Qian, Li

Ramponi, R.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Roberts, T. D.

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Seng Chiang, K.

W. Peng Wong and K. Seng Chiang, “Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides,” IEEE J. Quantum Electron. 37, 1138–1145(2001).
[CrossRef]

K. Seng Chiang and W. Peng Wong, “Theory of zero-birefringence multiple-quantum-well optical waveguides,” IEEE J. Quantum Electron. 35, 1554–1564 (1999).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Shi, X.

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Sipe, J. E.

Smirl, A. L.

Spillane, S. M.

Svozilík, J.

Tanner, M. G.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Teich, M. C.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Tong, C.

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

Torres, J. P.

U’Ren, A. B.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

van Driel, H. M.

Vinter, B.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[CrossRef]

Walmsley, I. A.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Weihs, G.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

West, B. R.

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

Xiong, C.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Yang, C.

Yang, Z.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007).
[CrossRef]

Yang, Z. S.

Zhao, L. S.

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

Zhu, E. Y.

Zijlstra, T.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Zwiller, V.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

Appl. Phys. Lett.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[CrossRef]

IEEE J. Quantum Electron.

K. Seng Chiang and W. Peng Wong, “Theory of zero-birefringence multiple-quantum-well optical waveguides,” IEEE J. Quantum Electron. 35, 1554–1564 (1999).
[CrossRef]

W. Peng Wong and K. Seng Chiang, “Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides,” IEEE J. Quantum Electron. 37, 1138–1145(2001).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

IET Circuits, Devices Syst.

M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).

J. Appl. Phys.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

J. Mod. Opt.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photon.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[CrossRef]

Opt. Express

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004).
[CrossRef]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
[CrossRef]

M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
[CrossRef]

S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15, 8770–8780 (2007).
[CrossRef]

G. Fujii, N. Namkata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
[CrossRef]

X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. A

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[CrossRef]

Phys. Rev. B

A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B 76, 035339 (2007).
[CrossRef]

Phys. Rev. Lett.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

Semicond. Sci. Technol.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004).
[CrossRef]

Other

Mode Solutions, version 4.0, Lumerical Solutions, Inc. Available: http://www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

BRW ridge-waveguide structure under study. The core is a 500 nm Al 0.61 Ga 0.39 As layer, surrounded by two 375 nm Al 0.2 Ga 0.8 As matching layers (MLs). The Bragg mirrors are six-period quarter-wave stacks of 461 nm Al 0.7 Ga 0.3 As and 129 nm Al 0.25 Ga 0.75 As . Also shown are intensity profiles of a TM-polarized pump mode (right) and a TE-polarized downconverted mode (left).

Fig. 2.
Fig. 2.

Density plots of the biphoton probability density | ϕ α β ( ω 1 , ω 2 ) / | 2 in (a) type-I ( α , β = x ) and (b) type-II ( β α ) PM. (c) The estimated ( K a ) and numerically calculated ( K ) SN for the generated biphotons [see Eqs. (10) and (11)] depending on the pump pulse duration τ .

Fig. 3.
Fig. 3.

Dependence of biphoton generation efficiency | ν | 2 / | μ | 2 on the properties of the structured core for type-I and type-II PM. The jagged features in the contours are artifacts of mesh discretization in the 2D mode solver.

Fig. 4.
Fig. 4.

Dependence of the SN, K , on the properties of the structured core for type-I and type-II PM.

Fig. 5.
Fig. 5.

Dependence of PM wavelength on (a) ambient temperature and (b) injection of carriers into the core and MLs.

Fig. 6.
Fig. 6.

Dependence of pair production rate on (a) ambient temperature and (b) injection of carriers into the core and MLs. The lines are a guide to the eye.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H NL = α β γ d k 1 d k 2 d k S α β γ ( k 1 , k 2 , k ) c α k 1 c β k 2 b γ k + H.c. ,
C II = 1 2 α , β 0 d k 1 d k 2 ϕ α β ( k 1 , k 2 ) c α k 1 c β k 2 .
α , β | ϕ α β ( k 1 , k 2 ) | 2 d k 1 d k 2 = 1 .
ϕ α β ( ω 1 , ω 2 ) = d k F α ( ω 1 ) d ω 1 d k F β ( ω 2 ) d ω 2 ϕ α β ( k 1 ( ω 1 ) , k 2 ( ω 2 ) )
| ν | 2 = | μ | 2 ( χ ¯ ( 2 ) ) 2 8 π ε 0 n ¯ 6 L 2 v F α v F β v S γ A eff × 0 d ω 1 d ω 2 ( ω 1 + ω 2 ) ω 1 ω 2 | ϕ ( ω 1 + ω 2 ) sinc ( Δ k PM γ α β L / 2 ) | 2
ϕ α β ( ω 1 , ω 2 ) ϕ ( ω 1 + ω 2 ) sinc ( Δ k PM γ α β L / 2 ) ,
k m = F , S σ = k m 0 σ + ( ω ω m 0 ) / v m σ + ( ω ω m 0 ) 2 Λ m σ .
Δ I = 2 4 s / | Λ F | L .
Δ II = 2 4 s / | Λ F | L + ( δ v / 2 | Λ F | ) 2 .
K = [ n p n 2 ] 1
K a = ( Σ + 2 + Σ 2 ) / 2 Σ + Σ .
ϕ x y ( ω 1 , ω 2 ) = ϕ y x ( ω 1 , ω 2 )
G = 2 0 d ω 1 d ω 2 ϕ x y ( ω 1 , ω 2 ) ϕ x y * ( ω 2 , ω 1 ) ,

Metrics