Abstract

Accurate values of the emission and absorption cross sections of Yb:YAG, Yb:LuAG, and Yb:CaF2 as a function of temperature between room temperature and 200 °C are presented. For this purpose, absorption and fluorescence spectra were measured using a setup optimized to reduce the effect of radiation trapping. From these data, emission cross sections were retrieved by combining the Fuchtbauer–Ladenburg equation and the reciprocity method. Based on our measurements, simple estimations illustrate the effect of temperature shifts that are likely to occur in typical laser setups. Our results show that even minor temperature variations can have significant impact on the laser performance using Yb:YAG and Yb:LuAG as an active medium, while Yb:CaF2 appears to be rather insensitive.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
    [CrossRef]
  2. D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
    [CrossRef]
  3. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
    [CrossRef]
  4. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Krankel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18, 20712–20722 (2010).
    [CrossRef]
  5. M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33, 2770–2772 (2008).
    [CrossRef]
  6. F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett. 34, 1474–1476 (2009).
    [CrossRef]
  7. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross-section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994).
    [CrossRef]
  8. H. Kuhn, S. T. Fredrich-Thornton, C. Krankel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
    [CrossRef]
  9. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  10. D. E. Mccumber, “Einstein relations connecting broadband emission + absorption spectra,” Phys. Rev. A 136, A954–957 (1964).
    [CrossRef]
  11. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  12. R. M. Martin and R. S. Quimby, “Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses,” J. Opt. Soc. Am. B 23, 1770–1775 (2006).
    [CrossRef]
  13. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Rodenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006).
    [CrossRef]
  14. V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
    [CrossRef]
  15. D. S. Sumida and T. Y. Fan, “Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature,” in Advanced Solid State Lasers, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, 1994), pp. 100–102.
  16. D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, B. H. T. Chai and S. A. Payne, eds. (Optical Society of America, 1995), pp. 348–350.
  17. J. Dong, M. Bass, Y. L. Mao, P. Z. Deng, and F. X. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [CrossRef]
  18. P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
    [CrossRef]
  19. V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
    [CrossRef]
  20. M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express 17, 19887–19893 (2009).
    [CrossRef]
  21. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
    [CrossRef]
  22. S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009).
    [CrossRef]
  23. M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
    [CrossRef]
  24. J. Speiser, “Thermal modeling of the thin disk laser,” J. Directed Energy 4, 32–70 (2010).

2011 (1)

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

2010 (3)

2009 (4)

F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett. 34, 1474–1476 (2009).
[CrossRef]

M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express 17, 19887–19893 (2009).
[CrossRef]

S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009).
[CrossRef]

M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
[CrossRef]

2008 (2)

2007 (3)

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
[CrossRef]

H. Kuhn, S. T. Fredrich-Thornton, C. Krankel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
[CrossRef]

2006 (2)

2005 (1)

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

2003 (1)

1999 (1)

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

1994 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1964 (1)

D. E. Mccumber, “Einstein relations connecting broadband emission + absorption spectra,” Phys. Rev. A 136, A954–957 (1964).
[CrossRef]

Bass, M.

Beil, K.

Benayad, A.

F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett. 34, 1474–1476 (2009).
[CrossRef]

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

Boedefeld, R.

Boudebs, G.

Boudeile, J.

Boulon, G.

Brenier, A.

Brown, D. C.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
[CrossRef]

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Camy, P.

F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett. 34, 1474–1476 (2009).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
[CrossRef]

Canibano, H.

Cassagne, C.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Cone, R. L.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Contag, K.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

Deng, P. Z.

Dong, J.

Doualan, J. L.

F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett. 34, 1474–1476 (2009).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
[CrossRef]

Druon, F.

Eganyan, A.

Equall, R. W.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Ertel, K.

Fan, T. Y.

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross-section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994).
[CrossRef]

D. S. Sumida and T. Y. Fan, “Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature,” in Advanced Solid State Lasers, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, 1994), pp. 100–102.

D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, B. H. T. Chai and S. A. Payne, eds. (Optical Society of America, 1995), pp. 348–350.

Fredrich-Thornton, S. T.

Friebel, F.

Gan, F. X.

Georges, P.

Giesen, A.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

Golpayegani, A. H.

S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009).
[CrossRef]

Golpaygani, A. H.

M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
[CrossRef]

Guelzow, J.

Guyot, Y.

Hanna, M.

Hein, J.

Hellwing, M.

Hornung, M.

Huber, G.

Hugel, H.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

Hutcheson, R.

D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, B. H. T. Chai and S. A. Payne, eds. (Optical Society of America, 1995), pp. 348–350.

Jafari, A. K.

S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009).
[CrossRef]

Jaque, D.

Jochmann, A.

Kahle, M.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

Kaluza, M.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

Kaluza, M. C.

Karsch, S.

Karszewski, M.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

Klingebiel, S.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Koerner, J.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express 17, 19887–19893 (2009).
[CrossRef]

Kowalewski, K.

Krankel, C.

Krausz, F.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kuhn, H.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Lenski, M.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

Liebetrau, H.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

Loeser, M.

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express 17, 19887–19893 (2009).
[CrossRef]

Mao, Y. L.

Martin, R. M.

Mccumber, D. E.

D. E. Mccumber, “Einstein relations connecting broadband emission + absorption spectra,” Phys. Rev. A 136, A954–957 (1964).
[CrossRef]

Menard, V.

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

Moncorge, R.

F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorge, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett. 34, 1474–1476 (2009).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
[CrossRef]

Najafi, M.

M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
[CrossRef]

Papadopoulos, D. N.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Petermann, K.

Peters, R.

Petit, V.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
[CrossRef]

Petrosyan, A. G.

Podleska, S.

Portier, X.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Quimby, R. S.

Rodenas, A.

Sabbaghzadeh, J.

M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
[CrossRef]

Schramm, U.

Sepehr, A.

M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
[CrossRef]

Siebold, M.

Singley, J. M.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Speiser, J.

J. Speiser, “Thermal modeling of the thin disk laser,” J. Directed Energy 4, 32–70 (2010).

Stewen, C.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

Sumida, D. S.

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross-section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994).
[CrossRef]

D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, B. H. T. Chai and S. A. Payne, eds. (Optical Society of America, 1995), pp. 348–350.

D. S. Sumida and T. Y. Fan, “Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature,” in Advanced Solid State Lasers, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, 1994), pp. 100–102.

Sun, Y. C.

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Tellkamp, F.

Toroghi, S.

S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009).
[CrossRef]

Uecker, R.

Vitali, V.

Von Edlinger, M.

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

Wandt, C.

Wolf, M.

Appl. Phys. B (1)

P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Menard, and R. Moncorge, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals,” Appl. Phys. B 89, 539–542 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb : YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

J. Directed Energy (1)

J. Speiser, “Thermal modeling of the thin disk laser,” J. Directed Energy 4, 32–70 (2010).

J. Lumin. (1)

V. Petit, P. Camy, J. L. Doualan, and R. Moncorge, “Refined analysis of the luminescent centers in the Yb3+: CaF2 laser crystal,” J. Lumin. 122, 5–7 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

M. Najafi, A. Sepehr, A. H. Golpaygani, and J. Sabbaghzadeh, “Simulation of thin disk laser pumping process for temperature dependent Yb:YAG property,” Opt. Commun. 282, 4103–4108 (2009).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

D. E. Mccumber, “Einstein relations connecting broadband emission + absorption spectra,” Phys. Rev. A 136, A954–957 (1964).
[CrossRef]

Phys. Rev. B (1)

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Proc. SPIE (1)

J. Koerner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE 8080808003–808007 (2011).
[CrossRef]

Quantum Electron (1)

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron 29, 697–703 (1999).
[CrossRef]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

D. S. Sumida and T. Y. Fan, “Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature,” in Advanced Solid State Lasers, T. Y. Fan and B. H. T. Chai, eds. (Optical Society of America, 1994), pp. 100–102.

D. S. Sumida, T. Y. Fan, and R. Hutcheson, “Spectroscopy and diode-pumped lasing of Yb3+-doped Lu3Al5O12 (Yb:LuAG),” in Advanced Solid State Lasers, B. H. T. Chai and S. A. Payne, eds. (Optical Society of America, 1995), pp. 348–350.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Measurement setup for determination of absorption and fluorescence spectra. The sample is mounted on a temperature adjustable holder. M1 to M3, silver coated turning mirrors; SM1 and SM2, silver coated spherical mirrors; L1 and L2, achromatic lenses; ANDO, optical spectrum analyzer; FLD, fiber coupled laser diode centered at 970 nm; WLS, fiber coupled white light source.

Fig. 2.
Fig. 2.

Comparison of different calculation methods for the determination of emission cross sections, as an example here shown for Yb:CaF2 at room temperature.

Fig. 3.
Fig. 3.

Absorption cross sections of Yb:YAG for different temperatures.

Fig. 4.
Fig. 4.

Absorption cross sections of Yb:LuAG for different temperatures.

Fig. 5.
Fig. 5.

Absorption cross sections of Yb:CaF2 for different temperatures.

Fig. 6.
Fig. 6.

Relative change in the peak absorption cross sections in different materials for about 940 nm (solid line) and near the zero phonon line (dashed line).

Fig. 7.
Fig. 7.

Emission cross sections of Yb:YAG for different temperatures.

Fig. 8.
Fig. 8.

Emission cross sections of Yb:LuAG for different temperatures.

Fig. 9.
Fig. 9.

Emission cross sections of Yb:CaF2 for different temperatures.

Fig. 10.
Fig. 10.

Relative change in the peak emission cross sections in different materials for 1030 nm.

Fig. 11.
Fig. 11.

Result of the modeled extraction fluence at different temperatures for a standard Yb:YAG amplifier pumped with 25kW/cm2 for 0.95 ms and seeded with a 0.1J/cm2 nanosecond pulse.

Fig. 12.
Fig. 12.

Simulation of the evolution of the beam profile during amplification. The seed beam is a super-Gaussian in shape with an order of 5 and the pump profile corresponds to a super-Gaussian with an order of 60. Other parameters equal the previous simulation.

Fig. 13.
Fig. 13.

Relative transparency threshold at 1030 nm in dependence of crystal temperature.

Fig. 14.
Fig. 14.

Relative cavity threshold at 1030 nm in dependence of crystal temperature.

Fig. 15.
Fig. 15.

Schematic of the modeled thin disk laser (not true-to-scale).

Fig. 16.
Fig. 16.

Average temperature of the pumped crystal volume.

Fig. 17.
Fig. 17.

Relative change in absorption coefficient at a pump intensity of 5.1kW/cm2.

Tables (4)

Tables Icon

Table 1. Energy Levels Taken From the Literature for the Calculation of σe(λ) with the Reciprocity Method

Tables Icon

Table 2. Comparison of Radiative Lifetimes From Different Measurement Techniques with Our Measurements

Tables Icon

Table 3. Parameters Used in the Simulation

Tables Icon

Table 4. Specific Crystal Parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σa=ln(I0(λ)Iout(λ))Ndotl,
σe(λ)σa(λ)=ZlZu·eEZLhcλkBT.
Zm=ndnm·eEnkT,
σe=λ28πn2τrgλ(λ).
gλ(λ)=λ3cIf(λ)λminλmaxλIf(λ)dλ.
β(t,x)t=I(x,t)λ·(σa(λ)+σe(λ))hc·(1β(t,x)βeq(λ))β(t,x)τr,
I(x,t)x=Ndotσa·(1β(t,x)βeq(λ))·I(x,t).
β(x,t)t=σecϕβ(x,t)βeq(λ)1βeq(λ).
ηabs=1eMpσa,pNdotlcχ
χ=1σa,p+σe,pσa,pNuNdot,
Nth=Ndotσa,lσa,l+σe,l+Lr+TocMrlc(σe,l+σa,l),
Ip,t=hνpτusηabs·(σa,lσa,l+σe,lNdotlctransparency threshold+Lr+Tocσa,l+σe,lcavity threshold),
Pheat=Pp[1eMpσa,p(T)Ndotldχ]absorbed pump power·(1νlνp)Stokes shift.
T¯=1tdlhlh+ldTc(z)dz=PheatVpld{12kc(lh+ld13z)z2+[1kcldlhlhkh(12lh+ld)+Rhld·πrp2+VpPheatT0]z}lhlh+ld.

Metrics