Abstract

Bragg reflection waveguides are shown to be structures that can enable the integration of a laser and optically nonlinear medium within the same cavity for efficient frequency conversion. An effective and simple method of designing phase-matched laser structures utilizing transfer matrix analysis is described. The structures are first optimized in terms of laser performance and then for enhancement of χ(2) nonlinearity. The method for optimization shows that designing for either optimum laser performance or optimum nonlinear performance can conflict. An efficiency term encompassing the requirements of both the laser and nonlinear element is derived. This serves as a figure of merit that includes parameters relevant to both the laser and the nonlinear device. It is then utilized to optimize the structure for efficient parametric conversion. This figure of merit is extended to examine parametric oscillation in the laser cavity for both singly resonant and doubly resonant configurations. It is found that threshold values of 4 W in a practical device can be obtained. Such power levels are easily obtained by mode locking the pump laser. With reduced propagation loss through etch and design improvement, sub-Watt thresholds can be realized.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin, E. Rosencher, and Y. J. Ding, “Analysis of all-semiconductor intracavity optical parametric oscillators,” J. Opt. Soc. Am. B 15, 1726–1730 (1998).
    [CrossRef]
  2. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
    [CrossRef]
  3. A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
    [CrossRef]
  4. A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
    [CrossRef]
  5. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
    [CrossRef]
  6. J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010).
    [CrossRef]
  7. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
    [CrossRef]
  8. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
    [CrossRef]
  9. J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
    [CrossRef]
  10. Y. Li, Y. Xi, X. Li, and W. Huang, “A single-mode laser based on asymmetric Bragg reflection waveguides,” Opt. Express 17, 11179–11186 (2009).
    [CrossRef]
  11. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [CrossRef]
  12. Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
    [CrossRef]
  13. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
    [CrossRef]
  14. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
    [CrossRef]
  15. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
    [CrossRef]
  16. T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
  17. B. R. West and A. S. Helmy, “Properties of the quarter-wave Bragg reflection waveguide: theory,” J. Opt. Soc. Am. B 23, 1207–1220 (2006).
    [CrossRef]
  18. J. Li and K. S. Chiang, “Guided modes of one-dimensional photonic bandgap waveguides,” J. Opt. Soc. Am. B 24, 1942–1950 (2007).
    [CrossRef]
  19. J. Chilwell and I. Hodgkinson, “Thin-film field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753(1984).
    [CrossRef]
  20. H. C. Casey and M. B. Panish, Heterostructure Lasers (Elsevier, 1978).
  21. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
    [CrossRef]
  22. G. Aers, “Institute for Microstructural Sciences: National Research Council of Canada (NRC),” http://www.nrc-cnrc.gc.ca/eng/ibp/ims.html .
  23. S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007).
    [CrossRef]
  24. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer2003).
  25. M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
    [CrossRef]
  26. C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).
  27. P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
    [CrossRef]
  28. B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
    [CrossRef]
  29. B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
    [CrossRef]
  30. J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
    [CrossRef]
  31. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
    [CrossRef]
  32. P. Abolghasem, M. Hendrych, X. J. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
    [CrossRef]
  33. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009).
    [CrossRef]

2012 (1)

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

2011 (1)

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

2010 (3)

2009 (7)

2008 (1)

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

2007 (3)

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

J. Li and K. S. Chiang, “Guided modes of one-dimensional photonic bandgap waveguides,” J. Opt. Soc. Am. B 24, 1942–1950 (2007).
[CrossRef]

2006 (3)

2004 (1)

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

2001 (2)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

2000 (2)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[CrossRef]

1998 (1)

1995 (1)

J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
[CrossRef]

1993 (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

1986 (1)

C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).

1984 (1)

1976 (1)

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
[CrossRef]

Abolghasem, P.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. J. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Aitchison, J. S.

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

Alali, S.

T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).

Arjmand, A.

Berger, V.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Bhat, R.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

Bijlani, B. J.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Calligaro, M.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Casey, H. C.

H. C. Casey and M. B. Panish, Heterostructure Lasers (Elsevier, 1978).

Chaitanya Kumar, S.

Chiang, K. S.

Chilwell, J.

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[CrossRef]

Cunzhu, T.

T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).

Dasgupta, S.

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007).
[CrossRef]

Davis, M. K.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

De Rossi, A.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Delansay, P.

J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
[CrossRef]

Ding, Y. J.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Fejer, M. M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Fujimura, M.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer2003).

Fukatsu, S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Ghatak, A.

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007).
[CrossRef]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Guowen, Y.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

Han, J.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009).
[CrossRef]

Han, J. B.

Helmy, A. S.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).

P. Abolghasem, M. Hendrych, X. J. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

B. R. West and A. S. Helmy, “Properties of the quarter-wave Bragg reflection waveguide: theory,” J. Opt. Soc. Am. B 23, 1207–1220 (2006).
[CrossRef]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
[CrossRef]

Hendrych, M.

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Hodgkinson, I.

Holmes, B. M.

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

Hu, M.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

Huang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Huang, W.

Hutchings, D. C.

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Ito, R.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Jung, B. G.

C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).

Kang, D.

Kang, D. P.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

Kano, S. S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Khurgin, J. B.

Kim, C. M.

C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).

Kitamura, M.

J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
[CrossRef]

Kondo, T.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Kumata, K.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Lee, C. W.

C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).

Leo, G.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Li, J.

Li, X.

Li, Y.

Loeber, D. A. S.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

Marcadet, X.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Ohashi, M.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Ortiz, V.

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

Pal, B. P.

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007).
[CrossRef]

Panish, M. B.

H. C. Casey and M. B. Panish, Heterostructure Lasers (Elsevier, 1978).

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Rosencher, E.

Shi, X. J.

Shim, J.

J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
[CrossRef]

Shiraki, Y.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Smith, G. M.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

Suhara, T.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer2003).

Sun, J.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Sun, Q.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Torres, J. P.

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Wagner, S. J.

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

Wang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Wang, J.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

West, B. R.

B. R. West and A. S. Helmy, “Properties of the quarter-wave Bragg reflection waveguide: theory,” J. Opt. Soc. Am. B 23, 1207–1220 (2006).
[CrossRef]

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

Xi, Y.

Yamaguchi, M.

J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
[CrossRef]

Yariv, A.

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
[CrossRef]

Yeh, P.

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
[CrossRef]

Younis, U.

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

Zah, C.

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Zhou, M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Electron. Lett. (2)

C. M. Kim, B. G. Jung, and C. W. Lee, “Analysis of dielectric rectangular waveguide by modified effective-index method,” Electron. Lett. 22, 296–298 (1986).

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20  Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940–941 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

T. Cunzhu, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).

IEEE J. Sel. Top. Quantum Electron. (4)

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2012).
[CrossRef]

B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006).
[CrossRef]

J. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1, 408–415(1995).
[CrossRef]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464(2009).
[CrossRef]

Y. Guowen, G. M. Smith, M. K. Davis, D. A. S. Loeber, M. Hu, C. Zah, and R. Bhat, “Highly reliable high-power 980 nm pump laser,” IEEE Photon. Technol. Lett. 16, 2403–2405 (2004).
[CrossRef]

J. Appl. Phys. (2)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S. S. Kano, “Determination of quadratic nonlinear-optical coefficient of AlGaAs system by the method of reflected 2nd harmonics,” J. Appl. Phys. 74, 596–601 (1993).
[CrossRef]

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Laser Photon. Rev. (1)

A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[CrossRef]

Opt. Commun. (2)

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
[CrossRef]

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: An accurate matrix method formulation,” Opt. Commun. 279, 83–88 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phil. Trans. R. Soc. A (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Other (3)

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer2003).

G. Aers, “Institute for Microstructural Sciences: National Research Council of Canada (NRC),” http://www.nrc-cnrc.gc.ca/eng/ibp/ims.html .

H. C. Casey and M. B. Panish, Heterostructure Lasers (Elsevier, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of an edge-emitting ridge BRW laser with its cavity phase matched for χ(2) processes. Current injection generates the pump laser, which propagates as the Bragg mode. Through the nonlinearity of the semiconductor, parametric light is generated within the laser cavity and propagates as a bound mode.

Fig. 2.
Fig. 2.

(a) Schematic of a BRW-ML. A core layer is surrounded by two transverse Bragg reflectors with a defect layer, referred to as matching layer, in between. (b) Technique used to analyze BRW-ML structures with active region layers. The right reflector contains the active region, while the core is only the left half. The reflection ϕright now includes the active region.

Fig. 3.
Fig. 3.

Index mismatch Δβ for BRW-ML Design A as a function of the defect-layer thickness when the QW active region is ignored (squares) in mode calculations and when the QW is included (circles).

Fig. 4.
Fig. 4.

Field profiles for the relevant modes of Design A: (a) BRW Ey and (b) TIR Ey at λp=980mm; (c) the TIR Hy at λs=1550mm and (d) TIR Ey at λi=2665mm. Profiles have been normalized to power for comparison.

Fig. 5.
Fig. 5.

Refractive index profiles of Design A for the (a) pump wavelength, (b) signal wavelength, and (c) idler wavelength.

Fig. 6.
Fig. 6.

(a) Variation of the ratio ΓBRW(TE)/ΓTIR(TE) with respect to core material (circles) and core thickness (squares). (b) Variation of the threshold current (circles) and output power at 100 mA (squares) with respect to the core thickness.

Fig. 7.
Fig. 7.

Field profiles for the relevant modes of Design B: (a) BRW Ey and (b) TIR Ey at λp; (c) the TIR Hy at λs and (d) TIR Ey at λi. Profiles have been normalized to power for comparison.

Fig. 8.
Fig. 8.

Refractive Index profiles of Design B for the: (a) pump wavelength; (b) signal wavelength and (c) idler wavelength.

Fig. 9.
Fig. 9.

Variation of efficiencies η and η with respect to core thickness. Here, the device length is L=1mm and the injected current is I=100mA.

Fig. 10.
Fig. 10.

(a) Tuning of the phase-matched signal and idler wavelengths as the pump wavelength is varied. With decreasing pump wavelength, larger idler wavelengths are accessible, well past 3 μm. (b) Dependency of conversion efficiency on pump wavelength.

Fig. 11.
Fig. 11.

Contour plots of OPO threshold powers in watts for (a) signal SRO and (b) DRO as a function of core thickness and device length. The mirror reflectivities are 99.9% and 95% for both signal and idler.

Fig. 12.
Fig. 12.

Contour plots of OPO threshold powers in watts for (a) signal SRO and (b) DRO as a function of core similar to Fig. 11. Here, signal and idler losses have been assumed to be 2cm1.

Tables (2)

Tables Icon

Table 1. Typical Laser Parameters Used for Calculations

Tables Icon

Table 2. Nonlinear Conversion Parameters for Three Phase-Matched BRW-ML Laser Structuresa

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

2tckc2β2+ϕleft+ϕright=4πnefftcλi+ϕleft+ϕright=2mπ,
r=M2,1M1,1=|r|eiϕ.
Δβ=2·π·(neff;p,BRWTEλpneff;s,TIRTMλsneff;i,TIRTEλi)=0.
Γi=d/2d/2|Ei|2dx|Ei|2dx,
Pout(J)=WLηiλp[JJtrexp(αpLln(Rp,1Rp,2)G0ΓpL)]×hceln(Rp,1Rp,2)ln(Rp,1Rp,2)αpL,Ith=WLηiλphceJtrexp(αpLln(Rp,1Rp,2)G0ΓpL),
deff=|+EpEsEid(x,y)dxdy||+EpEsEidxdy|,
Aeff(2)=+Ep2dxdy+Es2dxdy+Ei2dxdy(+EpEsEidxdy)2.
Apz=iκλpAsAiαp2Ap0,
Asz=iκλsApAi*αs2Asαs2As,
Aiz=iκλiApAs*αi2Ai,
κ=4πdeff2cϵ0neff,pneff,sneff,iAeff(2),
Ap(z)=Ap(0),
As(z)=As(0)exp(αsz/2),
Ai(z)=iκλiAs*(0)Ap*(0)exp(αiz/2)exp[(αs+αi)z/2](αs+αi)/2.
η=PiPpPs=|κ|2L2λi2exp[(αs+αi)L/2]sinh2([αsαi]L/4)([αsαi]L/4)2,
η=η·Pp,internal.
g=cosh(ΓNLL),
ΓNL=κPp/(λsλi).
SRO:Pp,th=λsλiκ2L2[cosh1(eαs,tL)]2,
DRO:Pp,th=λsλiκ2L2[cosh1(eαs,tLeαi,tL+1eαs,tL+eαi,tL)]2,αs,t=αsln(Rs,1Rs,2),αi,t=αiln(Ri,1Ri,2).
Pout(I)=(IIth)ηdhcλpe.
ηd=ηiαmgth,
Pout(J)=LWηiλp(JJth)hceαmgth.
Pout(J)=LWηiλp(JJth)hceln(Rp,1Rp,2)ln(Rp,1Rp,2)αpL.
gnet=GthΓL=gth.
Gth=G0ln(JthJtr).
Jth=Jtrexp[αpLln(Rp,1Rp,2)G0ΓL],
Pout(J)=WLηiλp[JJtrexp(αpLln(Rp,1Rp,2)G0ΓL)]×hceln(Rp,1Rp,2)ln(Rp,1Rp,2)αpL.

Metrics