Abstract

We present a comparative analysis of the dynamics of an actively Q-switched erbium-doped fiber laser assembled in two configurations of Fabry–Pérot cavity, asymmetric and symmetric, specified by the location of an acousto-optic Q-switch modulator relative to the output couplers. In both configurations, the length of an active (Er3+-doped) fiber is chosen such that the laser does not spuriously emit at the moments when the modulator is blocked, which is important for the pulse-on-demand operation. We show experimentally that the symmetric cavity configuration permits enlarging of the active fiber length twice as compared to the asymmetric one, thereby increasing the energy and decreasing the duration of output pulses. We also demonstrate that in the symmetric cavity configuration the laser emits a train of short (18ns width on a 3 dB level) and stable Q-switch pulses with a couple of much smaller in magnitude adjacent subpulses. We apply the traveling waves’ method for making an accurate modeling of the laser dynamics in both implementations. The modeling takes into account all the point intracavity losses as well as the distributed ones, including the loss stemming from the excited-state absorption of Er3+ ions. The results of numerical simulations of the laser dynamics in both implementations are shown to be in excellent agreement with experiments.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
    [CrossRef]
  2. W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32, 949–951 (2007).
    [CrossRef]
  3. W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
    [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  5. A. Roy, M. Laroche, P. Roy, P. Leproux, and J.-L. Auguste, “Q-switched Yb-doped nonlinear microstructured fiber laser for the emission of broadband spectrum,” Opt. Lett. 32, 3299–3301 (2007).
    [CrossRef]
  6. J. Cascante-Vindas, A. Diez, J. L. Cruz, and M. V. Andres, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34, 3628–3630 (2009).
    [CrossRef]
  7. S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR,” J. Lighwave Technol. 20, 1506–1511 (2002).
    [CrossRef]
  8. C. Cuadrado-Laborde, P. Perez-Millan, M. V. Andres, A. Diez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33, 2590–2592 (2008).
    [CrossRef]
  9. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49, 562–567 (2010).
    [CrossRef]
  10. J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4, 99–122 (2010).
    [CrossRef]
  11. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
    [CrossRef]
  12. P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
    [CrossRef]
  13. Y. Wang and C. Q. Xu, “Understanding multipeak phenomena in actively Q-switched fiber lasers,” Opt. Lett. 29, 1060–1062 (2004).
    [CrossRef]
  14. S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
    [CrossRef]
  15. J. M. Saucedo-Solorio, A. N. Pisarchik, A. V. Kir’yanov, and V. Aboites, “Generalized multistability in a fiber laser with modulated losses,” J. Opt. Soc. Am. B 20, 490–496 (2003).
    [CrossRef]
  16. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  17. A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
    [CrossRef]
  18. Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
    [CrossRef]
  19. M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Dekker, 2001), Chaps. 2 and 7.
  20. A. V. Kir’yanov and Yu. O. Barmenkov, “Excited-state absorption and ion pairs as sources of nonlinear losses in heavily doped erbium silica fiber and erbium fiber laser,” Opt. Express 13, 8498–8507 (2005).
    [CrossRef]
  21. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994), Chap. 1.
  22. W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
    [CrossRef]
  23. D. Marcuse, “Loss analysis in single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  24. R. Xin and J. D. Zuegel, “Amplifying nanosecond optical pulses at 1053 nm with an all-fiber regenerative amplifier,” Opt. Lett. 36, 2605–2607 (2011).
    [CrossRef]
  25. J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
    [CrossRef]
  26. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. J. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17, 20927–20937 (2009).
    [CrossRef]
  27. D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
    [CrossRef]
  28. A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27, 211–266 (2003).
    [CrossRef]
  29. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975).
    [CrossRef]
  30. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]
  31. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
    [CrossRef]

2011

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
[CrossRef]

R. Xin and J. D. Zuegel, “Amplifying nanosecond optical pulses at 1053 nm with an all-fiber regenerative amplifier,” Opt. Lett. 36, 2605–2607 (2011).
[CrossRef]

2010

2009

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. J. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17, 20927–20937 (2009).
[CrossRef]

J. Cascante-Vindas, A. Diez, J. L. Cruz, and M. V. Andres, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34, 3628–3630 (2009).
[CrossRef]

2008

C. Cuadrado-Laborde, P. Perez-Millan, M. V. Andres, A. Diez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33, 2590–2592 (2008).
[CrossRef]

Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
[CrossRef]

A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

2007

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005

2004

2003

2002

S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR,” J. Lighwave Technol. 20, 1506–1511 (2002).
[CrossRef]

1997

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

1996

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[CrossRef]

1993

1991

W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
[CrossRef]

1977

D. Marcuse, “Loss analysis in single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

1975

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975).
[CrossRef]

Aboites, V.

Adachi, S.

S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR,” J. Lighwave Technol. 20, 1506–1511 (2002).
[CrossRef]

Alam, S.

Andres, M. V.

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

J. Cascante-Vindas, A. Diez, J. L. Cruz, and M. V. Andres, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34, 3628–3630 (2009).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

C. Cuadrado-Laborde, P. Perez-Millan, M. V. Andres, A. Diez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33, 2590–2592 (2008).
[CrossRef]

Andrés, M. V.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

Auguste, J.-L.

Barmenkov, Y. O.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

C. Cuadrado-Laborde, P. Perez-Millan, M. V. Andres, A. Diez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33, 2590–2592 (2008).
[CrossRef]

A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Barmenkov, Yu. O.

Barnes, N. P.

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
[CrossRef]

Bellemare, A.

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27, 211–266 (2003).
[CrossRef]

Bruce, A. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Cascante-Vindas, J.

Chavez-Pirson, A.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

Chen, K. K.

Chrostowski, J.

Clarkson, W. A.

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cruz, J. L.

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

J. Cascante-Vindas, A. Diez, J. L. Cruz, and M. V. Andres, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34, 3628–3630 (2009).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

C. Cuadrado-Laborde, P. Perez-Millan, M. V. Andres, A. Diez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33, 2590–2592 (2008).
[CrossRef]

Cuadrado-Laborde, C.

De Young, R. J.

del Valle-Hernandez, J.

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994), Chap. 1.

Diez, A.

Díez, A.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Dekker, 2001), Chaps. 2 and 7.

Doi, H.

Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gosnell, T. R.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Guzman-Chavez, A. D.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Jeong, Y.

Jiang, S.

Kir’yanov, A. V.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

A. V. Kir’yanov and Yu. O. Barmenkov, “Excited-state absorption and ion pairs as sources of nonlinear losses in heavily doped erbium silica fiber and erbium fiber laser,” Opt. Express 13, 8498–8507 (2005).
[CrossRef]

J. M. Saucedo-Solorio, A. N. Pisarchik, A. V. Kir’yanov, and V. Aboites, “Generalized multistability in a fiber laser with modulated losses,” J. Opt. Soc. Am. B 20, 490–496 (2003).
[CrossRef]

Kitada, R.

Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
[CrossRef]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[CrossRef]

Kolpakov, S. A.

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

Koningstein, J. A. K.

Koyamada, Y.

S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR,” J. Lighwave Technol. 20, 1506–1511 (2002).
[CrossRef]

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
[CrossRef]

Laroche, M.

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975).
[CrossRef]

Leigh, M.

Leigh, M. A.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

Leproux, P.

Limpert, J.

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
[CrossRef]

Lin, D. J.

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975).
[CrossRef]

Malinowski, A.

Marcuse, D.

D. Marcuse, “Loss analysis in single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Morkel, R. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
[CrossRef]

Myslinski, P.

Nguyen, D. T.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

Nilsson, J.

Nodop, D.

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
[CrossRef]

Okamoto, Y.

Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
[CrossRef]

Pagnoux, D.

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[CrossRef]

Perez-Millan, P.

Peyghambarian, N.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

Pisarchik, A. N.

Richardson, D. J.

Roy, A.

Roy, P.

A. Roy, M. Laroche, P. Roy, P. Leproux, and J.-L. Auguste, “Q-switched Yb-doped nonlinear microstructured fiber laser for the emission of broadband spectrum,” Opt. Lett. 32, 3299–3301 (2007).
[CrossRef]

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[CrossRef]

Saucedo-Solorio, J. M.

Schimpf, D.

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
[CrossRef]

Shi, W.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32, 949–951 (2007).
[CrossRef]

Simpson, J. R.

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
[CrossRef]

Tauer, J.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[CrossRef]

Tünnermann, A.

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
[CrossRef]

Uno, Y.

Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
[CrossRef]

Vu, K. T.

Wang, Y.

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975).
[CrossRef]

Wintner, E.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[CrossRef]

Xin, R.

Xu, C. Q.

Yao, Z.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

Zong, J.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32, 949–951 (2007).
[CrossRef]

Zuegel, J. D.

Appl. Opt.

Appl. Phys. B

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011).
[CrossRef]

Appl. Phys. Lett.

A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss analysis in single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

IEEE J. Quantum Electron.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975).
[CrossRef]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009).
[CrossRef]

J. Adv. Mech. Design Syst. Manufacturing

Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008).
[CrossRef]

J. Appl. Phys.

Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).
[CrossRef]

J. Lighwave Technol.

S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR,” J. Lighwave Technol. 20, 1506–1511 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[CrossRef]

Opt. Commun.

J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Prog. Quantum Electron.

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27, 211–266 (2003).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Dekker, 2001), Chaps. 2 and 7.

E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Er 3 + energy level diagram. σ i j and τ i j are the cross sections and decay times for the transitions connecting levels i and j .

Fig. 2.
Fig. 2.

Asymmetric QS configuration. WDM1 and WDM2 are 980 / 1550 wavelength division multiplexers; FBG1 and FBG2 are fiber Bragg gratings; crosses show the fiber splices.

Fig. 3.
Fig. 3.

Symmetric QS configuration. Pulse generator (see Fig. 2) is not shown; z 1 , z 2 , z 3 , and z 4 indicate positions of the fiber splices (crosses).

Fig. 4.
Fig. 4.

Shapes of QS pulses as a function of the EDF length; EDF lengths are indicated near the correspondent curves. All curves are simulated for the laser output 1; see Fig. 2. The cavity length is equal to the experimental value (10.3 m). The zero-time corresponds to the moment of the AOM switching on.

Fig. 5.
Fig. 5.

Theoretical dependence of (a) the main subpulse peak power and (b) the pulse energy, both on EDF length. The curves are labeled by the correspondent laser output number.

Fig. 6.
Fig. 6.

Total EDF lengths are indicated near the correspondent curves. All curves are simulated for the laser output 1; see Fig. 3. The cavity length is equal to the experimental value (13.4 m). The zero-time corresponds to the moment at which the AOM is switching on.

Fig. 7.
Fig. 7.

Theoretical dependence of (a) the main subpulse peak power and (b) the pulse energy, both on EDF length. The curves are labeled by the correspondent laser output number.

Fig. 8.
Fig. 8.

Theoretical (solid curves) and experimental (circles) shapes of SQ-EDFL output pulse measured from (a) output 1 and (b) output 2. The left graphs (marked as 2 × 4 m ) correspond to the symmetric QS-EDFL, and the right graphs (marked as 4 m), to the asymmetric QS-EDFL. Zero-times correspond to the moments of switching the AOM on. The main pulses are labeled as 1b and 2d in the symmetric and asymmetric configurations, respectively.

Tables (1)

Tables Icon

Table 1. EDF Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

N 2 t = σ 12 s I s h ν s N 1 + σ 12 se I se h ν se N 1 σ 21 s I s h ν s N 2 σ 21 se I se h ν se N 2 σ 24 s I s h ν s N 2 σ 24 se I se h ν se N 2 N 2 τ 21 + N 3 τ 32 ,
N 3 t = σ 13 I p h ν p N 1 σ 31 I p h ν p N 3 N 3 τ 32 σ 35 I p h ν p N 3 + N 4 τ 43 ,
N 4 t = σ 24 s I s h ν s N 2 + σ 24 se I se h ν se N 2 N 4 τ 43 + N 5 τ 54 ,
N 5 t = σ 35 I p h ν p N 3 N 5 τ 54 ,
N 1 + N 2 + N 3 + N 4 + N 5 = N 0 ,
( n p c t ± z ) P p ± ( z , t ) = α p ( z , t ) P p ± ( z , t ) ,
( n s c t ± z ) P s ± ( z , t ) = g s ( z , t ) P s ± ( z , t ) + Ω 4 π η N 2 ( z , t ) τ 21 h ν s π a 2 ,
( n se c t ± z ) P se ± ( z , t ) = g se ( z , t ) P se ± ( z , t ) + Ω 4 π ( 1 η ) N 2 ( z , t ) τ 21 h ν se π a 2 ,
α p ( z , t ) = α p 0 [ n 1 ( z , t ) ( ξ p ε p ) n 3 ( z , t ) ] + α BG ,
g s ( z , t ) = α s 0 [ ( ξ s ε s ) n 2 ( z , t ) n 1 ( z , t ) ] α BG ,
g se ( z , t ) = α se 0 [ ( ξ se ε se ) n 2 ( z , t ) n 1 ( z , t ) ] α BG ,
P p ( z = L , t ) = P p 0 ,
P s + ( z = 0 , t ) = P s ( z = 0 , t ) R 1 T 1 2 ,
P s ( z = L c , t ) = P s + ( z = L c , t ) R 2 T 2 2 F m ( t ) F m ( t t m ) ,
P se + ( z = 0 , t ) = P se ( z = L , t ) = 0 ,
P s 1 ( t ) = P s ( z = 0 , t ) ( 1 R 1 ) ,
P s 2 ( t ) = P s + ( z = L c , t ) ( 1 R 2 ) .
F m ( t ) = [ 0.38 0 , t 0 [ 1 2 ( 1 cos ( π t t r ) ) ] 1.63 , 0 < t < t r 0.38 , t t r ] ,
P p + ( z 4 , t ) = P p 0 ,
P p ( z 1 , t ) = P p 0 ,
P s + ( 0 , t ) = P s ( 0 , t ) R 1 T 1 2 ,
P s ( L c , t ) = P s + ( L c , t ) R 2 T 2 2 ,
P s + ( z 4 , t ) = P s + ( z 1 , t ) T 12 F m ( t ) ,
P s ( z 1 , t ) = P s ( z 4 , t ) T 12 F m ( t ) ,
P se + ( 0 , t ) = P se ( L c , t ) = 0 ,

Metrics