Abstract

One of the main purposes of nanoplasmonics is the miniaturization of optical and electro-optical components that could be integrable in coplanar geometry. In this context, we propose a numerical model of a polarized scanning optical microscope able to faithfully reproduce both photon luminescence and temperature distribution images associated with complex plasmonic structures. The images are computed, pixel by pixel, through a complete self-consistent scheme based on the Green dyadic functions (GDF) formalism. The basic principle consists in the numerical implementation of a realistic three-dimensional light beam acting as a virtual light tip able to probe the volume of plasmonic structures. Two different acquisition procedures, respectively based on two-photon luminescence emission and local heating, are discussed in the case of gold colloidal particles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef]
  3. D. O’Connor and A. V. Zayats, “Data storage: the third plasmonic revolution,” Nat. Nanotechnol. 5, 482–483 (2010).
    [CrossRef]
  4. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011).
    [CrossRef]
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef]
  6. C. Girard, and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” J. Opt. A 8, S73–S86 (2006).
    [CrossRef]
  7. J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
    [CrossRef]
  8. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
    [CrossRef]
  9. J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
    [CrossRef]
  10. M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
    [CrossRef]
  11. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef]
  12. S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
    [CrossRef]
  13. J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
    [CrossRef]
  14. M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
    [CrossRef]
  15. A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
    [CrossRef]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
    [CrossRef]
  18. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
    [CrossRef]
  19. L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
    [CrossRef]
  20. A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
    [CrossRef]
  21. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  22. D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
    [CrossRef]
  23. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S.-H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823–833 (2006).
    [CrossRef]
  24. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
    [CrossRef]
  25. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
    [CrossRef]
  26. K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004).
    [CrossRef]
  27. H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric field and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84, 199–229 (2009).
    [CrossRef]
  28. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
    [CrossRef]
  29. P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008).
    [CrossRef]
  30. S. M. Novikov, J. Beermann, T. Sondergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon imaging of field enhancement by groups of gold nanostrip antennas,” J. Opt. Soc. Am. B 26, 2199–2203 (2009).
    [CrossRef]
  31. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
    [CrossRef]
  32. O. J. F. Martin, C. Girard, and A. Dereux, “Generalized propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef]
  33. D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
    [CrossRef]
  34. T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
    [CrossRef]
  35. C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
    [CrossRef]
  36. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [CrossRef]
  37. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).
    [CrossRef]
  38. P. Török, P. Varga, A. Konkol, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II,” J. Opt. Soc. Am. A 13, 2232–2138 (1996).
    [CrossRef]
  39. B. Nikoobakht and M. A. El–Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
    [CrossRef]
  40. F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
    [CrossRef]
  41. G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
    [CrossRef]
  42. G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
    [CrossRef]
  43. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010).
    [CrossRef]

2012 (1)

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

2011 (5)

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
[CrossRef]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011).
[CrossRef]

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

2010 (7)

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

D. O’Connor and A. V. Zayats, “Data storage: the third plasmonic revolution,” Nat. Nanotechnol. 5, 482–483 (2010).
[CrossRef]

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

2009 (5)

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef]

S. M. Novikov, J. Beermann, T. Sondergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon imaging of field enhancement by groups of gold nanostrip antennas,” J. Opt. Soc. Am. B 26, 2199–2203 (2009).
[CrossRef]

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
[CrossRef]

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric field and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84, 199–229 (2009).
[CrossRef]

2008 (3)

P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
[CrossRef]

2006 (4)

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

C. Girard, and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” J. Opt. A 8, S73–S86 (2006).
[CrossRef]

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S.-H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823–833 (2006).
[CrossRef]

2005 (3)

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

2004 (2)

K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004).
[CrossRef]

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

B. Nikoobakht and M. A. El–Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

2001 (2)

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

1999 (1)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

1997 (1)

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
[CrossRef]

1996 (2)

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

P. Török, P. Varga, A. Konkol, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II,” J. Opt. Soc. Am. A 13, 2232–2138 (1996).
[CrossRef]

1995 (2)

1994 (1)

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

1989 (1)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Arbouet, A.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
[CrossRef]

Bachelot, R.

Baffou, G.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[CrossRef]

G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef]

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
[CrossRef]

Bainier, C.

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Barchiesi, D.

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Barnard, E. S.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Baudrion, A. -L.

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

Baudrion, A.-L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Beermann, J.

Blaize, S.

Boltasseva, A.

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

Boltasseva, A. E.

Bonell, F.

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

Booker, G. R.

Bouhelier, A.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S.-H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823–833 (2006).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Bozhevolnyi, S. I.

S. M. Novikov, J. Beermann, T. Sondergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon imaging of field enhancement by groups of gold nanostrip antennas,” J. Opt. Soc. Am. B 26, 2199–2203 (2009).
[CrossRef]

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

Bramant, P.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

Brongersma, M. L.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011).
[CrossRef]

Burger, S.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
[CrossRef]

Castro, M. E.

Chang, S.-H.

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008).
[CrossRef]

Colas Des Francs, G.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

Colliex, C.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Courjon, D.

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Cuche, A.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Dereux, A.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef]

Devaux, E.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

Drezet, A.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef]

Dujardin, E.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
[CrossRef]

C. Girard, and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” J. Opt. A 8, S73–S86 (2006).
[CrossRef]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Ebbesen, T.

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

Ebbesen, T. W.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Eisler, H.-J.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

El–Sayed, M. A.

B. Nikoobakht and M. A. El–Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Frank, B.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
[CrossRef]

Garcia de Abajo, F. J.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef]

Geuquet, N.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008).
[CrossRef]

Giessen, H.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
[CrossRef]

Girard, C.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[CrossRef]

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
[CrossRef]

C. Girard, and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” J. Opt. A 8, S73–S86 (2006).
[CrossRef]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef]

Gomez, L.

González, M. U.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

Goudonnet, J. P.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Gray, S. K.

Gu, L.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Henrard, L.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Hofer, F.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
[CrossRef]

Hohenester, U.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
[CrossRef]

Hua, F.

Huant, S.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef]

Imura, K.

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric field and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84, 199–229 (2009).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004).
[CrossRef]

Jeon, S.

Koch, C. T.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Kociak, M.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Konkol, A.

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Krenn, J. R.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef]

Kulzer, F.

Lacroute, Y.

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Lamprecht, B.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Leitner, A.

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
[CrossRef]

Lerondel, G.

Li, M.

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Lin, S.

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Liz-Marzan, L. M.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mann, S.

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Mao, J.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Martin, O. J. F.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef]

Marty, R.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

Mollet, O.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef]

Mu, J.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004).
[CrossRef]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El–Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Novikov, S. M.

O’Connor, D.

D. O’Connor and A. V. Zayats, “Data storage: the third plasmonic revolution,” Nat. Nanotechnol. 5, 482–483 (2010).
[CrossRef]

Ögüt, B.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Okamoto, H.

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric field and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84, 199–229 (2009).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004).
[CrossRef]

Pala, R. A.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011).
[CrossRef]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Péchou, R.

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Quidant, R.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[CrossRef]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef]

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008).
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Rogers, J. A.

Royer, P.

Sanchot, A.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

Schaffer, B.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
[CrossRef]

Sharma, J.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

Sigle, W.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Sondergaard, T.

S. M. Novikov, J. Beermann, T. Sondergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon imaging of field enhancement by groups of gold nanostrip antennas,” J. Opt. Soc. Am. B 26, 2199–2203 (2009).
[CrossRef]

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

Song, M.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

Stefanon, I.

Stepanov, A. L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Stephan, O.

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Talebi, N.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

Török, P.

Trügler, A.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
[CrossRef]

van Aken, P. A.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

Van Labeke, D.

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Varga, P.

Vogelgesang, R.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Warmack, R. J.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Weeber, J. C.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

Weeber, J. -C.

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

Weeber, J.-C.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Wen, X.

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

Wiederrecht, G. P.

Wolf, R.

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
[CrossRef]

Zayats, A. V.

D. O’Connor and A. V. Zayats, “Data storage: the third plasmonic revolution,” Nat. Nanotechnol. 5, 482–483 (2010).
[CrossRef]

Zhang, D.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

Zhao, J.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
[CrossRef]

ACS Nano (4)

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011).
[CrossRef]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011).
[CrossRef]

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012).
[CrossRef]

G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef]

Adv. Mater. (1)

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Chem. Mater. (1)

B. Nikoobakht and M. A. El–Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

J. Chem. Phys. (1)

F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009).
[CrossRef]

J. Microsc. (1)

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001).
[CrossRef]

J. Opt. A (1)

C. Girard, and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” J. Opt. A 8, S73–S86 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004).
[CrossRef]

Nano Lett. (2)

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef]

J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[CrossRef]

Nat. Nanotechnol. (1)

D. O’Connor and A. V. Zayats, “Data storage: the third plasmonic revolution,” Nat. Nanotechnol. 5, 482–483 (2010).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Nature Nanotechnology (1)

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011).
[CrossRef]

New J. Phys. (2)

P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008).
[CrossRef]

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008).
[CrossRef]

Opt. Commun. (1)

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (9)

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[CrossRef]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006).
[CrossRef]

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009).
[CrossRef]

L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Phys. Rev. E (1)

D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Phys. Rev. Lett. (4)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[CrossRef]

O. J. F. Martin, C. Girard, and A. Dereux, “Generalized propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef]

Prog. Surf. Sci. (1)

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric field and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84, 199–229 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Science (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic geometry of an experimental configuration in which a focused light beam raster scans a transparent sample supporting plasmonic structures. The white arrow defines the field polarization E 0 .

Fig. 2.
Fig. 2.

Coordinate system used in the calculation of the Gaussian light beam. R 0 labels the beam waist center, r is an arbitrary position, k = ( α , β ) , and δ represents the angle between k and the ( O X ) axis.

Fig. 3.
Fig. 3.

Schematic drawing of two gold colloidal particles deposited on a dielectric substrate swept by a light beam. The vector r defines an arbitrary position inside the structure. V 1 and V 2 represent the volumes of particles (1) and (2).

Fig. 4.
Fig. 4.

Examples of colloidal structures deposited on a glass substrate. (A) and (B) SEM images of gold nanorods; (C) and (D) SEM images showing two examples of small PNN.

Fig. 5.
Fig. 5.

Sequence of four TPL simulation images of three identical gold nanorods deposited on a glass sample (diameter, 30 nm; length, 400 nm). The polarization of the incident electric field, marked by the white bar, takes the values 0°, 45°, 90°, and 135°, respectively. The image size is ( 2 μm × 1 μm ) and the incident wavelength is 730 nm.

Fig. 6.
Fig. 6.

TPL maps computed with a PNN composed of 543 gold spheres of average radius a = 6 nm . The two images are overlaid with the PNN branches represented by black crosses. The white bars represent the polarization of the incident field, which is rotated 90° when passing from map (A) to map (B). Image size, 1.2 μm × 1.2 μm ; wavelength, 730 nm; beam waist, 275 nm.

Fig. 7.
Fig. 7.

Top view of four temperature maps computed with the same structure and incident polarization as Fig. 5.

Fig. 8.
Fig. 8.

Four TPL images computed for different polarization states of the illumination beam. The object consists of two gold nanorods, 500 nm long, organized in the surface plane as the letter T. The gap between horizontal and vertical nanorods is 30 nm (beam waist, 300 nm; wavelength, 800 nm). The maps show the TPL signal for (A) an horizontal polarization, (B) an oblique polarization, (C) a vertical polarization, and (D) a circular polarization.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( R 0 , r , ω ) = ε 1 k 0 ε 1 k 0 d α ε 1 k 0 2 α 2 ε 1 k 0 2 α 2 d β × ζ exp [ w 0 2 ( α 2 + β 2 ) / 4 ] exp [ i α ( x x 0 ) + i β ( y y 0 ) + i k z ( z z 0 ) ] ,
( ζ x ζ y ) = T ( E 0 , x E 0 , y ) ,
T = ( ( τ τ ) cos 2 δ + τ ( τ τ ) cos δ sin δ ( τ τ ) cos δ sin δ ( τ τ ) sin 2 δ + τ ) .
E ( R 0 , r , ω ) = V K ( r , r , ω ) · E 0 ( R 0 , r , ω ) d r ,
K ( r , r , ω ) = δ ( r r ) + S ( r , r , ω ) · χ ( r , ω ) ,
χ ( r , ω ) = ϵ m ( r , ω ) ϵ env 4 π .
E ( R 0 , r i , ω ) = j = 1 N K ( r i , r j , ω ) · E 0 ( R 0 , r j , ω )
K ( r i , r j , ω ) = δ i , j + S ( r i , r j , ω ) · v χ ( r j , ω ) ,
χ ( r , ω ) = i = 1 N α i ( ω ) δ ( r r i ) ,
E ( R 0 , r i , ω ) = E 0 ( R 0 , r i , ω ) + j = 1 N α i ( ω ) S ( r i , r j , ω ) · E 0 ( R 0 , r j , ω ) .
I i ( R 0 , ω ) = [ η ( ω ) | E ( R 0 , r i , ω ) | 2 ] 2 .
I TPL ( R 0 , ω ) = η 2 ( ω ) i = 1 N [ | E ( R 0 , r i , ω ) | 2 ] 2 .
Q ( R 0 , r , ω ) = ω [ ϵ m ( ω ) ] 8 π | E ( R 0 , r , ω ) | 2 .
Δ T ( R 0 , ω ) = 1 4 π κ env V Q ( R 0 , r , ω ) | R 0 r | d r ,
Δ T ( R 0 , ω ) = v ω [ ϵ m ( ω ) ] 32 π 2 κ env i = 1 N | E ( R 0 , r i , ω ) | 2 | R 0 r i | .

Metrics