Abstract

We have experimentally investigated the dispersion of the third order optical susceptibility χ(3) of silver nanoparticles embedded in silica glass in the vicinity of the surface plasmon resonance. The dispersion of the real and imaginary parts of the effective third order optical susceptibility χeff(3) was evaluated from the effective refractive index using a spectroscopic ellipsometry and the transient transmission and reflection changes using a femtosecond pump probe spectroscopy. The Imχeff(3) exhibits a minimum value of 1.3×1017m2/V2 at 3.03 eV. The results demonstrate that the local field factor greatly contributes to the dispersion of χeff(3) for Ag nanoparticles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  2. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
    [CrossRef]
  3. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
    [CrossRef]
  4. J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89, 153120 (2006).
    [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2010).
    [CrossRef]
  6. J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
    [CrossRef]
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
    [CrossRef]
  8. K. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).
    [CrossRef]
  9. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  10. F. K. Amankona-Diawuo and T. Seideman, “Communication: toward ultrafast, reconfigurable logic in the nanoscale,” J. Chem. Phys. 135, 071102 (2011).
    [CrossRef]
  11. L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
    [CrossRef]
  12. Y. Guillet, E. Charron, and B. Palpant, “Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles,” Phys, Rev. B 79, 195432 (2009).
    [CrossRef]
  13. Y. Takeda, O. A. Plaskin, and N. Kishimoto, “Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass,” Opt. Express 15, 6010–6018 (2007).
    [CrossRef]
  14. Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, “Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass,” Nucl. Instrum. Methods B 148, 1029–1033 (1999).
    [CrossRef]
  15. Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
    [CrossRef]
  16. A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).
  17. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  18. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
    [CrossRef]
  19. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
    [CrossRef]
  20. H. Fujiwara, Spectroscopic ellipsometry: Principles and Applications (John Wiley, 2007).
  21. Y. Takeda, H. Momida, M. Ohnuma, T. Ohno, and N. Kishimoto, “Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials,” Opt. Express 16, 7471–80 (2008).
    [CrossRef]
  22. J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
    [CrossRef]
  23. D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
    [CrossRef]
  24. F. Hache, D. Richard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” JOSA B 3, 1647–1655 (1986).
    [CrossRef]

2011 (3)

F. K. Amankona-Diawuo and T. Seideman, “Communication: toward ultrafast, reconfigurable logic in the nanoscale,” J. Chem. Phys. 135, 071102 (2011).
[CrossRef]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
[CrossRef]

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

2010 (2)

2009 (1)

Y. Guillet, E. Charron, and B. Palpant, “Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles,” Phys, Rev. B 79, 195432 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89, 153120 (2006).
[CrossRef]

2005 (3)

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

2003 (2)

K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

2002 (1)

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

2000 (2)

J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[CrossRef]

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
[CrossRef]

1999 (2)

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, “Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass,” Nucl. Instrum. Methods B 148, 1029–1033 (1999).
[CrossRef]

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

1998 (1)

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

1986 (1)

F. Hache, D. Richard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” JOSA B 3, 1647–1655 (1986).
[CrossRef]

Amankona-Diawuo, F. K.

F. K. Amankona-Diawuo and T. Seideman, “Communication: toward ultrafast, reconfigurable logic in the nanoscale,” J. Chem. Phys. 135, 071102 (2011).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Beinhoff, M.

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Bigot, J.-Y.

J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[CrossRef]

Borchert, H.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Borsella, E.

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

Bozano, L. D.

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Carter, K. R.

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Charron, E.

Y. Guillet, E. Charron, and B. Palpant, “Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles,” Phys, Rev. B 79, 195432 (2009).
[CrossRef]

Cole, J. R.

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89, 153120 (2006).
[CrossRef]

Coronado, E.

K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Daunois, A.

J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[CrossRef]

Di Trapani, P.

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

Faccio, D.

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

Feldmann, J.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Flytzanis, C.

F. Hache, D. Richard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” JOSA B 3, 1647–1655 (1986).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectroscopic ellipsometry: Principles and Applications (John Wiley, 2007).

Gao, J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
[CrossRef]

Gole, A. M.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Gonella, F.

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

Gou, L.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Gritsyna, V. T.

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, “Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass,” Nucl. Instrum. Methods B 148, 1029–1033 (1999).
[CrossRef]

Grubel, G.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Guillet, Y.

Y. Guillet, E. Charron, and B. Palpant, “Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles,” Phys, Rev. B 79, 195432 (2009).
[CrossRef]

Hache, F.

F. Hache, D. Richard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” JOSA B 3, 1647–1655 (1986).
[CrossRef]

Halas, N. J.

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89, 153120 (2006).
[CrossRef]

Halté, V.

J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Hayashi, N.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
[CrossRef]

Herrmann, J.

Hunyadi, S. E.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Husakou, A.

Jensen, T.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Kean, B. W.

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Kelly, K.

K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kelly, L.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Kim, K.

Kishimoto, N.

Klar, T. A.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Kornowski, A.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Lazarides, A.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Lee, C. G.

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, “Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass,” Nucl. Instrum. Methods B 148, 1029–1033 (1999).
[CrossRef]

Li, T.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Malvezzi, A. M.

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

Marle, J.-C.

J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[CrossRef]

Mazzoldi, P.

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

Mekis, I.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Momida, H.

Muller, J.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Murphy, C. J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Nakamura, A.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
[CrossRef]

Ohno, T.

Ohnuma, M.

Omi, S.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
[CrossRef]

Orendorff, C. J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Palpant, B.

Y. Guillet, E. Charron, and B. Palpant, “Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles,” Phys, Rev. B 79, 195432 (2009).
[CrossRef]

Plaskin, O. A.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Rice, P. M.

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Richard, D.

F. Hache, D. Richard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” JOSA B 3, 1647–1655 (1986).
[CrossRef]

Robert, A.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Sau, T. K.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

Schatz, G. C.

K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Scott, J. C.

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Seideman, T.

F. K. Amankona-Diawuo and T. Seideman, “Communication: toward ultrafast, reconfigurable logic in the nanoscale,” J. Chem. Phys. 135, 071102 (2011).
[CrossRef]

Shevchenko, E. V.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Sonnichsen, C.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

Takeda, Y.

Umeda, N.

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, “Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass,” Nucl. Instrum. Methods B 148, 1029–1033 (1999).
[CrossRef]

von Plessen, G.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

von Poschinger, H.

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Weller, H.

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Zhao, L. L.

K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Adv. Funct. Mater. (1)

L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles” Adv. Funct. Mater. 15, 1933–1939 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

J. R. Cole and N. J. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett. 89, 153120 (2006).
[CrossRef]

J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002).
[CrossRef]

Chem. Phys. (1)

J.-Y. Bigot, V. Halté, J.-C. Marle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[CrossRef]

Europhys. Lett. (1)

D. Faccio, P. Di Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third order susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43, 213–218 (1998).
[CrossRef]

J. Chem. Phys. (1)

F. K. Amankona-Diawuo and T. Seideman, “Communication: toward ultrafast, reconfigurable logic in the nanoscale,” J. Chem. Phys. 135, 071102 (2011).
[CrossRef]

J. Cluster Sci. (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

J. Lumin. (1)

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin. 87—89, 859–861 (2000).
[CrossRef]

J. Phys. Chem. B (2)

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B 109, 13857–13870 (2005).
[CrossRef]

K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
[CrossRef]

JOSA B (1)

F. Hache, D. Richard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” JOSA B 3, 1647–1655 (1986).
[CrossRef]

Langmuir (1)

H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, and H. Weller, “Determination of nanocrystals sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles,” Langmuir 21, 1931–1936 (2005).
[CrossRef]

Nat. Mat. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2010).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mat. 2, 229–232 (2003).
[CrossRef]

Nucl. Instrum. Methods B (1)

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, “Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass,” Nucl. Instrum. Methods B 148, 1029–1033 (1999).
[CrossRef]

Opt. Express (3)

Phys, Rev. B (1)

Y. Guillet, E. Charron, and B. Palpant, “Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles,” Phys, Rev. B 79, 195432 (2009).
[CrossRef]

Rev. Adv. Mater. Sci. (1)

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Other (2)

H. Fujiwara, Spectroscopic ellipsometry: Principles and Applications (John Wiley, 2007).

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross sectional TEM image of the Ag nanoparticles sample.

Fig. 2.
Fig. 2.

UV-visible absorption spectrum of silver nanoparticles in silica glass.

Fig. 3.
Fig. 3.

(a) Measured and (b) fitted dispersion of dielectric function of silver nanoparticles in silica glass. Real and imaginary parts are represented by full and dashed lines, respectively.

Fig. 4.
Fig. 4.

Transient transmission and reflection changes around the SPR right after the excitation of the pumping pulse at 3.1 eV.

Fig. 5.
Fig. 5.

(a) Measured and (b) fitted dispersion of the third order optical susceptibility of silver nanoparticles for an applied field corresponding to 4.6×108V/m. Real and imaginary parts are represented by full and dashed lines, respectively.

Fig. 6.
Fig. 6.

Numerically calculated dispersion of the real and imaginary parts of the dielectric function changes along with the third order susceptibility of silver nanoparticles. The results are presented for total, interband, and Drude terms.

Fig. 7.
Fig. 7.

Numerically calculated dispersion of the real and imaginary parts of the intrinsic dielectric function changes along with the intrinsic third order susceptibility of silver nanoparticles. The results are presented for total, interband, and Drude terms.

Fig. 8.
Fig. 8.

Dispersion of the fl2 |fl|2 numerically calculated for silver nanoparticles.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔRR=1RRnΔn+1RRkΔkΔTT=1TTnΔn+1TTkΔkΔε=2(nΔnkΔk)Δε=2(nΔk+kΔn),
Δε=34χeff(3)I,
χeff(3)(ωprobe)=pfl2(ωprobe)|fl(ωpump)|2χm(3)(ωprobe).
fl(ω)=εd(ω)Lεm(ω)+(1L)εd(ω),

Metrics