Abstract

We have determined all the three independent components of quadratic nonlinear-optical coefficients of ZnO by highly accurate Maker-fringe measurements on high-quality bulk samples combined with theoretical analyses taking account of the multiple-reflection effects. The obtained values of quadratic nonlinear-optical coefficients are d31=2.0±0.1pm/V, d15=2.1±0.1pm/V, and d33=6.2±0.3pm/V at the fundamental wavelength of 1.06 μm. This shows that the ratio d33/d31, which is estimated to be 3.0, is deviated from the widely used value of 2 predicted for idealized wurtzite crystal.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  2. H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
    [CrossRef]
  3. G. Wang, G. K. L. Wong, and J. B. Ketterson, “Redetermination of second-order susceptibility of zinc oxide single crystal,” Appl. Opt. 40, 5436–5438 (2001).
    [CrossRef]
  4. X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
    [CrossRef]
  5. C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
    [CrossRef]
  6. M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
    [CrossRef]
  7. O. G. Morales-Saavedra and L. Castañeda, “Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by chemical spray technique,” Opt. Commun. 269, 370–377 (2007).
    [CrossRef]
  8. F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
    [CrossRef]
  9. M. Abe, I. Shoji, J. Suda, and T. Kondo, “Comprehensive analysis of multiple-reflection effects on rotational Maker-fringe experiments,” J. Opt. Soc. Am. B 25, 1616–1624 (2008).
    [CrossRef]
  10. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spotaneous polarization and piezoelectric constans of III-V nitrides,” Phys. Rev. B 56, R10024–R10027 (1997).
    [CrossRef]
  11. B. Monemar, and G. Pozina, “Group III-nitride based hetero and quantum structures,” Prog. Quantum Electron. 24, 239–290 (2000).
    [CrossRef]
  12. M. Abe, H. Sato, I. Shoji, J. Suda, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Kondo, “Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride,” J. Opt. Soc. Am. B 27, 2026–2034 (2010).
    [CrossRef]
  13. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  14. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797–833 (2002).
    [CrossRef]
  15. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  16. K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 nm,” Appl. Opt. 34, 8276–8282 (1995).
    [CrossRef]
  17. A. N. Pikhtin and A. D. Yas’kov, “Refractive index and birefringence of semiconductors with the wurtzite structure,” Sov. Phys. Semicond. 15, 8–12 (1981).
  18. H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear-optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
    [CrossRef]
  19. F. N. H. Robinson, “Relation between the components of the non-linear polarisability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26A, 435–436 (1968).
  20. B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7, 2600–2626 (1973).
    [CrossRef]
  21. H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
    [CrossRef]
  22. B. F. Levine, “Origin of the unusual dependence of the nonlinear optical susceptibility on bond length for ionic ferroelectrics,” Phys. Rev. B 10, 1655–1664 (1974).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

2007 (2)

O. G. Morales-Saavedra and L. Castañeda, “Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by chemical spray technique,” Opt. Commun. 269, 370–377 (2007).
[CrossRef]

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

2006 (1)

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

2004 (2)

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
[CrossRef]

2002 (1)

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797–833 (2002).
[CrossRef]

2001 (1)

2000 (1)

B. Monemar, and G. Pozina, “Group III-nitride based hetero and quantum structures,” Prog. Quantum Electron. 24, 239–290 (2000).
[CrossRef]

1998 (1)

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

1997 (2)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spotaneous polarization and piezoelectric constans of III-V nitrides,” Phys. Rev. B 56, R10024–R10027 (1997).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

1996 (1)

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

1995 (1)

1992 (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1981 (1)

A. N. Pikhtin and A. D. Yas’kov, “Refractive index and birefringence of semiconductors with the wurtzite structure,” Sov. Phys. Semicond. 15, 8–12 (1981).

1974 (1)

B. F. Levine, “Origin of the unusual dependence of the nonlinear optical susceptibility on bond length for ionic ferroelectrics,” Phys. Rev. B 10, 1655–1664 (1974).
[CrossRef]

1973 (1)

B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7, 2600–2626 (1973).
[CrossRef]

1968 (1)

F. N. H. Robinson, “Relation between the components of the non-linear polarisability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26A, 435–436 (1968).

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Abe, M.

Belardini, A.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Bernardini, F.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spotaneous polarization and piezoelectric constans of III-V nitrides,” Phys. Rev. B 56, R10024–R10027 (1997).
[CrossRef]

Bertolotti, M.

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Binh, N. T.

C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
[CrossRef]

Blaha, P.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Canali, R.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

Cao, H.

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

Castañeda, L.

O. G. Morales-Saavedra and L. Castañeda, “Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by chemical spray technique,” Opt. Commun. 269, 370–377 (2007).
[CrossRef]

Chang, R. P. H.

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

Dai, J. Y.

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

Das, T. P.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Dominici, L.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

Fiorentini, V.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spotaneous polarization and piezoelectric constans of III-V nitrides,” Phys. Rev. B 56, R10024–R10027 (1997).
[CrossRef]

Günter, P.

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Haertle, D.

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Hagimoto, K.

Hiller, U.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Ito, R.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797–833 (2002).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

Kalvius, G. M.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Kawasaki, M.

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

Ketterson, J. B.

Kitamoto, A.

Kitaoka, Y.

Köfferlein, M.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Koinuma, H.

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

Kondo, T.

Krazel, H.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Larciprete, M. C.

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Levine, B. F.

B. F. Levine, “Origin of the unusual dependence of the nonlinear optical susceptibility on bond length for ionic ferroelectrics,” Phys. Rev. B 10, 1655–1664 (1974).
[CrossRef]

B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7, 2600–2626 (1973).
[CrossRef]

Liu, C. Y.

C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
[CrossRef]

Menchini, F.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

Michelotti, F.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Mitchell, D. W.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Mito, A.

Monemar, B.

B. Monemar, and G. Pozina, “Group III-nitride based hetero and quantum structures,” Prog. Quantum Electron. 24, 239–290 (2000).
[CrossRef]

Morales-Saavedra, O. G.

O. G. Morales-Saavedra and L. Castañeda, “Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by chemical spray technique,” Opt. Commun. 269, 370–377 (2007).
[CrossRef]

Mori, Y.

Mueller, J.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

Ohtomo, A.

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

Ong, H. C.

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

Pasternak, M. P.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Pikhtin, A. N.

A. N. Pikhtin and A. D. Yas’kov, “Refractive index and birefringence of semiconductors with the wurtzite structure,” Sov. Phys. Semicond. 15, 8–12 (1981).

Potzel, W.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Pozina, G.

B. Monemar, and G. Pozina, “Group III-nitride based hetero and quantum structures,” Prog. Quantum Electron. 24, 239–290 (2000).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Robinson, F. N. H.

F. N. H. Robinson, “Relation between the components of the non-linear polarisability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26A, 435–436 (1968).

Sarto, F.

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Sato, H.

Schiessl, W.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Schoer, G.

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

Schwarz, K.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Segawa, Y.

C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
[CrossRef]

Shirane, M.

Shoji, I.

Steiner, M.

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

Suda, J.

Tang, Z. K.

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spotaneous polarization and piezoelectric constans of III-V nitrides,” Phys. Rev. B 56, R10024–R10027 (1997).
[CrossRef]

Wang, G.

Wong, G. K. L.

Wu, J. Y.

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

Yas’kov, A. D.

A. N. Pikhtin and A. D. Yas’kov, “Refractive index and birefringence of semiconductors with the wurtzite structure,” Sov. Phys. Semicond. 15, 8–12 (1981).

Yoshimura, M.

Zhang, B. P.

C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
[CrossRef]

Zhang, X. Q.

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Second harmonic generation in laser ablated zinc oxide thin films,” Appl. Phys. Lett. 73, 572–574 (1998).
[CrossRef]

F. Michelotti, R. Canali, L. Dominici, A. Belardini, F. Menchini, G. Schoer, and J. Mueller, “Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering,” Appl. Phys. Lett. 90, 181110 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (2)

O. G. Morales-Saavedra and L. Castañeda, “Second harmonic generation of fluorine-doped zinc oxide thin films grown on soda-lime glass substrates by chemical spray technique,” Opt. Commun. 269, 370–377 (2007).
[CrossRef]

C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun. 237, 65–70 (2004).
[CrossRef]

Opt. Quantum Electron. (1)

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797–833 (2002).
[CrossRef]

Phys. Lett. (1)

F. N. H. Robinson, “Relation between the components of the non-linear polarisability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26A, 435–436 (1968).

Phys. Rev. B (4)

B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7, 2600–2626 (1973).
[CrossRef]

H. Krazel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B 53, 11425–11438 (1996).
[CrossRef]

B. F. Levine, “Origin of the unusual dependence of the nonlinear optical susceptibility on bond length for ionic ferroelectrics,” Phys. Rev. B 10, 1655–1664 (1974).
[CrossRef]

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spotaneous polarization and piezoelectric constans of III-V nitrides,” Phys. Rev. B 56, R10024–R10027 (1997).
[CrossRef]

Prog. Quantum Electron. (1)

B. Monemar, and G. Pozina, “Group III-nitride based hetero and quantum structures,” Prog. Quantum Electron. 24, 239–290 (2000).
[CrossRef]

Sov. Phys. Semicond. (1)

A. N. Pikhtin and A. D. Yas’kov, “Refractive index and birefringence of semiconductors with the wurtzite structure,” Sov. Phys. Semicond. 15, 8–12 (1981).

Thin Solid Films (1)

X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Second harmonic generation in self-assembled ZnO microcrystallite thin films,” Thin Solid Films 450, 320–323 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Measured Maker fringes of the (0001) sample obtained in the s-p configuration. The output SH powers are normalized with respect to the envelope of the Maker fringes of quartz (d11). The inset shows a portion of the Maker-fringe data from 15° to 30° plotted on an expanded horizontal scale.

Fig. 2.
Fig. 2.

Maker fringes in the s-p configuration of the (0001) sample. The open squares are the experimental data, and the solid curves show the theoretical fitting curves, which are plotted only in the positive angle regions in three separated parts on expanded horizontal scales.

Fig. 3.
Fig. 3.

Maker fringes in the 45°-s configuration of the (0001) sample. The open squares are the experimental data, and the solid curves show the theoretical fitting curves.

Fig. 4.
Fig. 4.

Maker fringes in the p-p configuration of the (0001) sample. The open squares are the experimental data, and the solid curves show the theoretical fitting curves.

Fig. 5.
Fig. 5.

Maker fringes in the p-s configuration of the (101¯0) sample. The open squares are the experimental data, and the solid curves show the theoretical fitting curves.

Fig. 6.
Fig. 6.

Maker fringes in the 45°-p configuration of the (101¯0) sample. The open squares are the experimental data, and the solid curves show the theoretical fitting curves.

Fig. 7.
Fig. 7.

Maker fringes in the s-s configuration of the (101¯0) sample. The open squares are the experimental data, and the solid curves show the theoretical fitting curves.

Fig. 8.
Fig. 8.

SH power versus sample thickness of the (101¯0) wedge sample in the d31 configuration. The open squares are the experimental data and the solid curve represents the theoretical fitting curve.

Fig. 9.
Fig. 9.

SH power versus sample thickness of the (101¯0) wedge sample in the d15 configuration. The open squares are the experimental data and the solid curve represents the theoretical fitting curve.

Fig. 10.
Fig. 10.

SH power versus sample thickness of the (101¯0) wedge sample in the d33 configuration. The open squares are the experimental data and the solid curve represents the theoretical fitting curve.

Metrics