Abstract

The dynamical evolution of a quantum system composed of two coupled cavities, each containing a two-level atom and a single-mode thermal field, is investigated under different conditions. The entanglement between the two atoms is controlled by the hopping strength and the detuning between the atomic transition and the cavities. We find that when the atomic transition is far off-resonant with both the eigenmodes of the coupled-cavity system, the maximally entangled state for the two atoms can be generated with the initial state in which one atom is in the ground state and the other is in the excited state. When both the two atoms are initially in the excited state, the entanglement exhibits periodical sudden birth and death. By choosing appropriate parameter values, the initial maximal entanglement of the two atoms can be frozen. The relation between the concurrence and the cooperative parameter is calculated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University, 1997).
  2. V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996).
    [CrossRef]
  3. S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
    [CrossRef]
  4. M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
    [CrossRef]
  5. B. Zhang, “Entanglement between two qubits interacting with a slightly detuned thermal field,” Opt. Commun. 283, 4676–4679 (2010).
    [CrossRef]
  6. F. A. A. El-Orany, “Exact treatment for the entanglement of the multiphoton two-qubit system with the single-mode thermal field,” J. Opt. Soc. Am. B 28, 2087–2097 (2011).
    [CrossRef]
  7. L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002).
    [CrossRef]
  8. X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004).
    [CrossRef]
  9. L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
    [CrossRef]
  10. X. Y. Wang, and X. S. Chen, “Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field,” J. Phys. B 39, 3805–3814 (2006).
    [CrossRef]
  11. Z. H. Musslimani, and Y. Ben-Aryeh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998).
    [CrossRef]
  12. M. B. Plenio, and S. F. Huelga, “Entangled Light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
    [CrossRef]
  13. L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
    [CrossRef]
  14. S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
    [CrossRef]
  15. V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012).
    [CrossRef]
  16. V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012).
    [CrossRef]
  17. S. B. Zheng, “Quantum-information processing and multiatom-entanglement engineering with a thermal cavity,” Phys. Rev. A 66, 060303(R) (2002).
  18. S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
    [CrossRef]
  19. S. B. Zheng, “Macroscopic superposition and entanglement for displaced thermal fields induced by a single atom,” Phys. Rev. A 75, 032114 (2007).
    [CrossRef]
  20. C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
    [CrossRef]
  21. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).
    [CrossRef]
  22. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef]
  23. Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
    [CrossRef]
  24. Z. Q. Yin, and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
    [CrossRef]
  25. J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
    [CrossRef]
  26. S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
    [CrossRef]
  27. M. Yönaç, and J. H. Eberly, “Qubit entanglement driven by remote optical fields,” Opt. Lett. 33, 270–272 (2008).
    [CrossRef]
  28. M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006).
    [CrossRef]
  29. Z. Ficek, and R. Tanaś, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
    [CrossRef]
  30. C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
    [CrossRef]
  31. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
    [CrossRef]
  32. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).
  33. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [CrossRef]
  34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  35. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
    [CrossRef]

2012 (2)

V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012).
[CrossRef]

V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012).
[CrossRef]

2011 (5)

Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
[CrossRef]

S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
[CrossRef]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

F. A. A. El-Orany, “Exact treatment for the entanglement of the multiphoton two-qubit system with the single-mode thermal field,” J. Opt. Soc. Am. B 28, 2087–2097 (2011).
[CrossRef]

2010 (3)

B. Zhang, “Entanglement between two qubits interacting with a slightly detuned thermal field,” Opt. Commun. 283, 4676–4679 (2010).
[CrossRef]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
[CrossRef]

2008 (6)

Z. Ficek, and R. Tanaś, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

M. Yönaç, and J. H. Eberly, “Qubit entanglement driven by remote optical fields,” Opt. Lett. 33, 270–272 (2008).
[CrossRef]

J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
[CrossRef]

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[CrossRef]

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).
[CrossRef]

2007 (2)

Z. Q. Yin, and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

S. B. Zheng, “Macroscopic superposition and entanglement for displaced thermal fields induced by a single atom,” Phys. Rev. A 75, 032114 (2007).
[CrossRef]

2006 (3)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

X. Y. Wang, and X. S. Chen, “Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field,” J. Phys. B 39, 3805–3814 (2006).
[CrossRef]

M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006).
[CrossRef]

2005 (1)

L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
[CrossRef]

2004 (2)

L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
[CrossRef]

X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004).
[CrossRef]

2003 (1)

S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
[CrossRef]

2002 (4)

S. B. Zheng, “Quantum-information processing and multiatom-entanglement engineering with a thermal cavity,” Phys. Rev. A 66, 060303(R) (2002).

L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002).
[CrossRef]

M. B. Plenio, and S. F. Huelga, “Entangled Light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
[CrossRef]

2001 (1)

S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
[CrossRef]

2000 (1)

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

1998 (2)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Z. H. Musslimani, and Y. Ben-Aryeh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998).
[CrossRef]

1996 (1)

V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996).
[CrossRef]

Adam, G.

V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996).
[CrossRef]

Aguiar, L. S.

L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
[CrossRef]

Ahn, D.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
[CrossRef]

Ben-Aryeh, Y.

Z. H. Musslimani, and Y. Ben-Aryeh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998).
[CrossRef]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
[CrossRef]

Brandão, F. G. S. L.

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).
[CrossRef]

Bužek, V.

V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996).
[CrossRef]

Chen, X. S.

X. Y. Wang, and X. S. Chen, “Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field,” J. Phys. B 39, 3805–3814 (2006).
[CrossRef]

Drobný, G.

V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996).
[CrossRef]

Du, J. F.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

Eberly, J. H.

M. Yönaç, and J. H. Eberly, “Qubit entanglement driven by remote optical fields,” Opt. Lett. 33, 270–272 (2008).
[CrossRef]

M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006).
[CrossRef]

El-Orany, F. A. A.

Eremeev, V.

V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012).
[CrossRef]

V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012).
[CrossRef]

Feng, M.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

Ficek, Z.

Z. Ficek, and R. Tanaś, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Figueroa, E.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Fuentes-Guridi, I.

S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
[CrossRef]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Hartmann, M. J.

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).
[CrossRef]

Hu, Y.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

Huelga, S. F.

M. B. Plenio, and S. F. Huelga, “Entangled Light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

Irish, E. K.

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[CrossRef]

Kim, M. S.

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[CrossRef]

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
[CrossRef]

Knight, P. L.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
[CrossRef]

S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
[CrossRef]

Lastra, F.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Lee, J.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
[CrossRef]

Li, C.

L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002).
[CrossRef]

Li, F. L.

S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
[CrossRef]

Z. Q. Yin, and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Liu, B.

J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
[CrossRef]

López, C. E.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Montenegro, V.

V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012).
[CrossRef]

V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012).
[CrossRef]

Munhoz, P. P.

L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
[CrossRef]

Musslimani, Z. H.

Z. H. Musslimani, and Y. Ben-Aryeh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998).
[CrossRef]

Nölleke, C.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Ogden, C. D.

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[CrossRef]

Orszag, M.

V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012).
[CrossRef]

V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012).
[CrossRef]

Patrick, S. R. J.

S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
[CrossRef]

Plenio, M. B.

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).
[CrossRef]

M. B. Plenio, and S. F. Huelga, “Entangled Light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

Polzik, E. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Quo, Y. Q.

L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
[CrossRef]

Reiserer, A.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Rempe, G.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Retamal, J. C.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Ritter, S.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Romero, G.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Roversi, J. A.

L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University, 1997).

Serafini, A.

S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Solano, E.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Song, H. S.

J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
[CrossRef]

L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
[CrossRef]

X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004).
[CrossRef]

L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002).
[CrossRef]

Song, J.

J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
[CrossRef]

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Specht, H. P.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Tanas, R.

Z. Ficek, and R. Tanaś, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Uphoff, M.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Vedral, V.

S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
[CrossRef]

Vidiella-Barranco, A.

L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
[CrossRef]

Wang, X. Y.

X. Y. Wang, and X. S. Chen, “Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field,” J. Phys. B 39, 3805–3814 (2006).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Wu, H. Z.

Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
[CrossRef]

Xia, Y.

Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
[CrossRef]

J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
[CrossRef]

Yang, W. L.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

Yang, Y.

S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
[CrossRef]

Yang, Z. B.

Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
[CrossRef]

S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
[CrossRef]

Ye, S. Y.

S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
[CrossRef]

Yi, X. X.

X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004).
[CrossRef]

L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
[CrossRef]

Yin, Z. Q.

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
[CrossRef]

Z. Q. Yin, and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Yönaç, M.

M. Yönaç, and J. H. Eberly, “Qubit entanglement driven by remote optical fields,” Opt. Lett. 33, 270–272 (2008).
[CrossRef]

M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006).
[CrossRef]

Yu, T.

M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006).
[CrossRef]

Zhang, B.

B. Zhang, “Entanglement between two qubits interacting with a slightly detuned thermal field,” Opt. Commun. 283, 4676–4679 (2010).
[CrossRef]

Zheng, S. B.

Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
[CrossRef]

S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
[CrossRef]

S. B. Zheng, “Macroscopic superposition and entanglement for displaced thermal fields induced by a single atom,” Phys. Rev. A 75, 032114 (2007).
[CrossRef]

S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
[CrossRef]

S. B. Zheng, “Quantum-information processing and multiatom-entanglement engineering with a thermal cavity,” Phys. Rev. A 66, 060303(R) (2002).

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Zhou, L.

L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
[CrossRef]

X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004).
[CrossRef]

L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University, 1997).

Eur. Phys. J. D (2)

Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011).
[CrossRef]

J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008).
[CrossRef]

Int. J. Mod. Phys. B (1)

S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011).
[CrossRef]

J. Opt. B (3)

L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002).
[CrossRef]

L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005).
[CrossRef]

L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. A: Math. Gen. (1)

X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004).
[CrossRef]

J. Phys. B (2)

X. Y. Wang, and X. S. Chen, “Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field,” J. Phys. B 39, 3805–3814 (2006).
[CrossRef]

M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006).
[CrossRef]

Laser Photon. Rev. (1)

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).
[CrossRef]

Nature (1)

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[CrossRef]

Opt. Commun. (1)

B. Zhang, “Entanglement between two qubits interacting with a slightly detuned thermal field,” Opt. Commun. 283, 4676–4679 (2010).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (12)

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002).
[CrossRef]

V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996).
[CrossRef]

W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).

Z. Ficek, and R. Tanaś, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010).
[CrossRef]

Z. Q. Yin, and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

S. B. Zheng, “Quantum-information processing and multiatom-entanglement engineering with a thermal cavity,” Phys. Rev. A 66, 060303(R) (2002).

S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003).
[CrossRef]

S. B. Zheng, “Macroscopic superposition and entanglement for displaced thermal fields induced by a single atom,” Phys. Rev. A 75, 032114 (2007).
[CrossRef]

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[CrossRef]

Z. H. Musslimani, and Y. Ben-Aryeh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998).
[CrossRef]

V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012).
[CrossRef]

Phys. Rev. Lett. (6)

M. B. Plenio, and S. F. Huelga, “Entangled Light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
[CrossRef]

Phys. Scr. (1)

V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Other (1)

M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Proposed experimental setup. Two two-level atoms are respectively trapped in two coupled cavities, each of which is initially in a thermal state.

Fig. 2.
Fig. 2.

Atom–atom concurrence as a function of the evolution time and photon hopping strength with n ¯ = 1 and δ = 10 g . The atoms are initially in the state | e 1 g 2 .

Fig. 3.
Fig. 3.

Atom–atom concurrence as a function of the evolution time and photon hopping strength with n ¯ = 1 and J = 25 g . The atoms are initially in the state | e 1 g 2 .

Fig. 4.
Fig. 4.

Atom–atom concurrence as a function of the evolution time and hopping strength when n ¯ = 0.1 : (a)  g 1 = g 2 = g for the initial state | e 1 e 2 ; (b)  g 1 = g 2 = g for the initial state | g 1 g 2 ; (c)  δ = 0 , g 1 = J , and g 2 = g for the initial state | e 1 e 2 .

Fig. 5.
Fig. 5.

Dashed red line represents the atomic population inversion σ z 1 + σ z 2 and solid black line represents the average photon number a 1 a 1 , which are as a function of the evolution time when n ¯ = 0.1 , J = 20 g , and δ = 18.5 g for the initial state | e 1 e 2 .

Fig. 6.
Fig. 6.

Atom–atom concurrence as a function of evolution time and hopping strength with δ = 0 and n ¯ = 0.1 . The atoms are initially in the entangled state ( | e 1 g 2 + | g 1 e 2 ) / 2 .

Fig. 7.
Fig. 7.

Atom–atom concurrence as a function of evolution time with δ = 0 , J = 10 g . The atoms are initially in (a)  | e 1 g 2 ; (b)  ( | e 1 g 2 + | g 1 e 2 ) / 2 .

Fig. 8.
Fig. 8.

Atom–atom concurrence as a function of the evolution time g t and cooperative parameter C κ γ when n ¯ = 0.1 . The atoms are in the initial state | e 1 g 2 with δ = 0 and J = 10 g : (a)  γ = 0.1 κ ; (b)  γ = κ . While the atoms are in the initial state ( | e 1 g 2 + | g 1 e 2 ) / 2 with δ = 15 g and J = 5 g . (c)  γ = 0.1 κ ; (d)  γ = κ .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H = i = 1 2 [ δ i a i a i + g i ( S i + a i + S i a i ) ] + J ( a 1 a 2 + a 1 a 2 ) ,
ρ f i = n i = 0 P i ( n i ) | n i n i | ,
P i ( n i ) = n ¯ i n i ( n ¯ i + 1 ) ( n i + 1 ) ,
Γ 0 = { | g 1 g 2 | 0 1 | 0 2 } ,
Γ 1 = { | e 1 g 2 | 0 1 | 0 2 , | g 1 e 2 | 0 1 | 0 2 , | g 1 g 2 | 1 1 | 0 2 , | g 1 g 2 | 0 1 | 1 2 } .
Γ N = { Γ a , Γ b , Γ c , Γ d } , Γ a = { | e 1 g 2 | N 1 1 | 0 2 , | e 1 g 2 | N 2 1 | 1 2 , , | e 1 g 2 | 1 1 | N 2 2 , | e 1 g 2 | 0 1 | N 1 2 } , Γ b = { | g 1 e 2 | N 1 1 | 0 2 , | g 1 e 2 | N 2 1 | 1 2 , , | g 1 e 2 | 1 1 | N 2 2 , | g 1 e 2 | 0 1 | N 1 2 } , Γ c = { | g 1 g 2 | N 1 | 0 2 , | g 1 g 2 | N 1 1 | 1 2 , , | g 1 g 2 | 1 1 | N 1 2 , | g 1 g 2 | 0 1 | N 2 } , Γ d = { | e 1 e 2 | N 2 1 | 0 2 , | e 1 e 2 | N 3 1 | 1 2 , , | e 1 e 2 | 1 1 | N 3 2 , | e 1 e 2 | 0 1 | N 2 2 } .
ρ a = ( A 0 0 G 0 B E 0 0 E * C 0 G * 0 0 D ) .
C ( ρ a ) = max { 0 , λ 1 λ 2 λ 3 λ 4 } ,
ξ = ρ a ( σ y σ y ) ρ a * ( σ y σ y ) ,
C ( ρ a ) = 2 max { 0 , | E | A D , | G | B C } .
ρ ( 0 ) = | e 1 g 2 e 1 g 2 | n 1 , n 2 = 0 P 1 ( n 1 ) P 2 ( n 2 ) | n 1 n 2 n 1 n 2 | .
H = δ 1 b 1 b 1 + δ 2 b 2 b 2 + g 2 [ b 1 ( S 1 + + S 2 + ) + b 2 ( S 1 + S 2 + ) + H.c. ] ,
H I = g 2 [ e i δ 1 t b 1 ( S 1 + + S 2 + ) + e i δ 2 t b 2 ( S 1 + S 2 + ) + H.c. ] .
H eff = i = 1 2 [ ( g 2 2 δ 1 b 1 b 1 + g 2 2 δ 2 b 2 b 2 ) ( | e i e i | | g i g i | ) + λ | e i e i | ] + λ ( S 1 + S 2 + H.c. ) ,
ρ . ( t ) = i [ H , ρ ( t ) ] + κ 2 ( n ¯ + 1 ) i = 1 2 [ 2 a i ρ ( t ) a i a i a i ρ ( t ) ρ ( t ) a i a i ] + κ 2 n ¯ i = 1 2 [ 2 a i ρ ( t ) a i a i a i ρ ( t ) ρ ( t ) a i a i ] + γ 2 ( n ¯ + 1 ) i = 1 2 [ 2 S i ρ ( t ) S i + S i + S i ρ ( t ) ρ ( t ) S i + S i ] + γ 2 n ¯ i = 1 2 [ 2 S i + ρ ( t ) S i S i S i + ρ ( t ) ρ ( t ) S i S i + ] ,

Metrics