Abstract

A ytterbium (Yb) doped lutetium gallium garnet (Yb:Lu3Ga5O12, Yb:LuGG) single crystal has been successfully grown by the optical floating-zone method for the first time to our knowledge. Its thermal properties, including specific heat, thermal expansion coefficient, and thermal diffusion coefficient, were measured, and the thermal conductivity was determined to be 4.94Wm1K1 at room temperature. The absorption and fluorescence spectra were measured at room temperature. The stimulated emission cross-sections were calculated using the reciprocity method and Fuchtbauer–Ladenburg formula, respectively. Continuous-wave (CW) laser oscillation of the Yb:LuGG crystal was also demonstrated with a 971 nm diode laser used as the pump source, generating an output power of 3.1 W with a slope efficiency of 44%. The results of our study indicate that the Yb:LuGG crystal is a promising new laser medium, and it is expected to be comparable to the most widely used material, Yb:YAG.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
    [CrossRef]
  2. S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
    [CrossRef]
  3. W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000).
    [CrossRef]
  4. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
    [CrossRef]
  5. J. Ye, L. S. Ma, and J. L. Hall, “High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers,” J. Opt. Soc. Am. B 17, 927–931 (2000).
    [CrossRef]
  6. T. Y. Fan, S. Klunk, and G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993).
    [CrossRef]
  7. L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
    [CrossRef]
  8. H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
    [CrossRef]
  9. K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
    [CrossRef]
  10. M. Grinberg, B. Kuklinski, K. Wisniewski, C. Koepke, T. Łukasiewicz, J. Kisielewski, M. Swirkowicz, and A. Suchocki, “Spectroscopy of lanthanum lutetium gallium garnet crystals doped with chromium,” J. Opt. Soc. Am. B 20, 577–584 (2003).
    [CrossRef]
  11. A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
    [CrossRef]
  12. D. P. Ma and J. P. Zhang, “Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+,” Phys. Rev. B 68, 054111 (2003).
    [CrossRef]
  13. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34, 151–153 (2009).
    [CrossRef]
  14. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
    [CrossRef]
  15. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
    [CrossRef]
  16. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
    [CrossRef]
  17. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hadrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tunnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011).
    [CrossRef]
  18. S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
    [CrossRef]
  19. X. Y. Zhang, A. Brenier, Q. P. Wang, Z. P. Wang, J. Chang, P. Li, S. J. Zhang, S. H. Ding, and S. T. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13, 7708–7719 (2005).
    [CrossRef]
  20. H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
    [CrossRef]
  21. Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
    [CrossRef]
  22. G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
    [CrossRef]
  23. X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
    [CrossRef]
  24. W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
    [CrossRef]
  25. A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
    [CrossRef]
  26. S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009).
    [CrossRef]
  27. X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
    [CrossRef]
  28. L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
    [CrossRef]
  29. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970).
    [CrossRef]
  30. W. M. Koechner, Solid State Laser Engineering2nd ed.(Springer, 1988).
  31. A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995).
    [CrossRef]
  32. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  33. R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
    [CrossRef]
  34. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
    [CrossRef]
  35. J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
    [CrossRef]
  36. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006).
    [CrossRef]
  37. J. Dong, M. Bass, Y. L. Mao, P. Z. Deng, and F. X. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [CrossRef]
  38. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
    [CrossRef]
  39. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
    [CrossRef]
  40. G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
    [CrossRef]
  41. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
    [CrossRef]
  42. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
    [CrossRef]
  43. J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31, 2580–2582 (2006).
    [CrossRef]
  44. F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
    [CrossRef]
  45. S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
    [CrossRef]
  46. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley VCH, 2008).
  47. J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
    [CrossRef]

2011

2010

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

2009

2008

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

2007

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
[CrossRef]

2006

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31, 2580–2582 (2006).
[CrossRef]

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006).
[CrossRef]

2005

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

X. Y. Zhang, A. Brenier, Q. P. Wang, Z. P. Wang, J. Chang, P. Li, S. J. Zhang, S. H. Ding, and S. T. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13, 7708–7719 (2005).
[CrossRef]

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

2004

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
[CrossRef]

2003

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

J. Dong, M. Bass, Y. L. Mao, P. Z. Deng, and F. X. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
[CrossRef]

D. P. Ma and J. P. Zhang, “Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+,” Phys. Rev. B 68, 054111 (2003).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

M. Grinberg, B. Kuklinski, K. Wisniewski, C. Koepke, T. Łukasiewicz, J. Kisielewski, M. Swirkowicz, and A. Suchocki, “Spectroscopy of lanthanum lutetium gallium garnet crystals doped with chromium,” J. Opt. Soc. Am. B 20, 577–584 (2003).
[CrossRef]

2002

2000

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers,” J. Opt. Soc. Am. B 17, 927–931 (2000).
[CrossRef]

1997

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

1995

A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995).
[CrossRef]

1993

T. Y. Fan, S. Klunk, and G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993).
[CrossRef]

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

1991

1990

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

1986

1982

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

1970

Abell, J. S.

S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009).
[CrossRef]

Aburish-Hmidat, M.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
[CrossRef]

Aka, G. P.

Amann, M. C.

Anedda, A.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Apolonski, A.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Balembois, F.

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

Bass, M.

Baumaum, J. A.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Bednarz, J. P.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Boehm, G.

Boulon, G.

Bour, D. P.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Bradshaw, A.

S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009).
[CrossRef]

Brenier, A.

Brons, J.

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Bystrom, K. J.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Caird, J. A.

Calmano, T.

Canibano, H.

Carbonaro, C. M.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Chang, J.

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Chenais, S.

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

Chiriu, D.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Choi, H. K.

Dalby, R. J.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Deng, P. Z.

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
[CrossRef]

J. Dong, M. Bass, Y. L. Mao, P. Z. Deng, and F. X. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
[CrossRef]

Ding, L. H.

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Ding, S. H.

Dolkemeyer, J.

Dong, J.

Drescher, M.

Druon, F.

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

Duesterer, S.

Dujardin, C.

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Eganyan, A.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006).
[CrossRef]

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Ettenberg, M.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Faatz, B.

Fabian, K. B.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

T. Y. Fan, S. Klunk, and G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
[CrossRef]

Feldhaus, J.

Fort, D.

S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009).
[CrossRef]

Fortin, E.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Fournier, D.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Fredrich-Thornton, S. T.

Fukuda, T.

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

Gan, F. X.

Gaume, R.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Gaumé, R.

Georges, P.

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

Gilbert, D. B.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

Goldner, P.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

Gottschall, T.

Grasse, C.

Griebner, U.

Grinberg, M.

Guerassimova, N.

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Guerini, M.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Guide, T. S.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Guyot, Y.

Hadrich, S.

Hall, J. L.

Harding, C. M.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

He, X. M.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

Henein, G.

Huang, L. X.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Huber, G.

Jaque, D.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Jiang, M.

Jiang, M. H.

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34, 151–153 (2009).
[CrossRef]

Jie, M. Y.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

Kalashnikov, V. L.

Kamenskikh, I.

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Kisielewski, J.

Klunk, S.

Koechner, W.

Koechner, W. M.

W. M. Koechner, Solid State Laser Engineering2nd ed.(Springer, 1988).

Koepke, C.

Koohpayeh, S. M.

S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009).
[CrossRef]

Kopf, D.

Kränkel, C.

Krausz, F.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
[CrossRef]

Kühn, H.

Kuklinski, B.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Lacovara, P.

Leclin, G. L.

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

Li, D. H.

Li, H. J.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

Li, L.

L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

Li, P.

Li, S. T.

Limpert, J.

Lin, J.

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

Liu, J.

Liu, W. P.

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Liu, X. M.

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

Lorrai, P. G.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Lukasiewicz, T.

Ma, D. P.

D. P. Ma and J. P. Zhang, “Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+,” Phys. Rev. B 68, 054111 (2003).
[CrossRef]

Ma, L. S.

Mans, T.

Mao, Y. L.

Marion, J. E.

Mateos, X.

Meng, X. L.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Mohr, S.

Nakatsuka, A.

A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995).
[CrossRef]

Nikl, M.

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

Novoselov, A.

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ovanesyan, K. L.

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Pang, H. Y.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley VCH, 2008).

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Pedrini, C.

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Pejchal, J.

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

Pervak, V.

Petermann, K.

Peters, R.

Petit, J.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

Petrosyan, A. G.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006).
[CrossRef]

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Petrov, V.

Pronin, O.

Qin, L. J.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Raybaut, P.

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Ricci, P. C.

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

Riedel, R.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ródenas, A.

Roger, J. P.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Rossbach, J.

Russbueldt, P.

Schlarb, H.

Schnitzler, C.

Schulz, M.

Seise, E.

Serreze, H. B.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Shen, H. Y.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Shepard, A. H.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Shi, P.

L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

Shi, Z. B.

Shinn, M. D.

Shirinyan, G.

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Siebenmorgen, J.

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Solarz, R.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

Stokowski, S. E.

Suchocki, A.

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Sun, D. L.

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Swirkowicz, M.

Takeno, S.

A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995).
[CrossRef]

Tavella, F.

Tunnermann, A.

Viana, B.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

Vivien, D.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Walters, R. G.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Wang, C. A.

Wang, J.

Wang, J. L.

Wang, J. Y.

Wang, L. L.

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

Wang, Q. P.

Wang, Z. P.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34, 151–153 (2009).
[CrossRef]

X. Y. Zhang, A. Brenier, Q. P. Wang, Z. P. Wang, J. Chang, P. Li, S. J. Zhang, S. H. Ding, and S. T. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13, 7708–7719 (2005).
[CrossRef]

Wei, Z. Y.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
[CrossRef]

Willner, A.

Wisniewski, K.

Wu, K.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
[CrossRef]

Xia, H. R.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Xiao, J.

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Xu, B. C.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Xu, C. W.

Xu, J.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
[CrossRef]

Xu, X. D.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
[CrossRef]

Yan, C. F.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

Yao, B.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
[CrossRef]

Ye, J.

Yellin, S. L.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Yin, S. T.

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Yoshiasa, A.

A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995).
[CrossRef]

Yoshikawa, A.

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

Yu, C. C.

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

Yu, H. H.

Yu, Y. G.

Zhang, H.

Zhang, H. J.

Zhang, J. P.

D. P. Ma and J. P. Zhang, “Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+,” Phys. Rev. B 68, 054111 (2003).
[CrossRef]

Zhang, L.

L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

Zhang, Q. L.

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Zhang, S. J.

Zhang, X. Y.

Zhang, Y. D.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
[CrossRef]

Zhang, Z. G.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
[CrossRef]

Zhao, G. J.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

Zhao, P.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Zhao, Z. W.

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
[CrossRef]

Zheng, G.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Zhou, B. B.

Zhu, L.

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

Zou, Y. W.

Acta Crystallogr. Sect. B

A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010).
[CrossRef]

Appl. Phys. Lett.

R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Cryst. Res. Technol.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[CrossRef]

IEEE J. Quantum Electron.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010).
[CrossRef]

A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006).
[CrossRef]

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[CrossRef]

J. Appl. Phys.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010).
[CrossRef]

J. Cryst. Growth

G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005).
[CrossRef]

K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010).
[CrossRef]

A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006).
[CrossRef]

S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010).
[CrossRef]

Nucl. Instrum. Methods A

G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hadrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tunnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011).
[CrossRef]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011).
[CrossRef]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31, 2580–2582 (2006).
[CrossRef]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34, 151–153 (2009).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009).
[CrossRef]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010).
[CrossRef]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
[CrossRef]

T. Y. Fan, S. Klunk, and G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993).
[CrossRef]

Opt. Mater.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

Phys. Rev. B

D. P. Ma and J. P. Zhang, “Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+,” Phys. Rev. B 68, 054111 (2003).
[CrossRef]

Physica B (Amsterdam)

W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008).
[CrossRef]

Solid State Commun.

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004).
[CrossRef]

Other

W. M. Koechner, Solid State Laser Engineering2nd ed.(Springer, 1988).

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley VCH, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Photograph of the Yb:LuGG crystal grown by optical floating-zone method.

Fig. 2.
Fig. 2.

XRPD patterns of Yb:LuGG and LuGG.

Fig. 3.
Fig. 3.

Specific heat versus temperature.

Fig. 4.
Fig. 4.

Thermal expansion versus temperature.

Fig. 5.
Fig. 5.

Density versus temperature.

Fig. 6.
Fig. 6.

Thermal diffusion coefficient and thermal conductivity versus temperature.

Fig. 7.
Fig. 7.

Absorption and emission cross-sections of Yb:LuGG.

Fig. 8.
Fig. 8.

The fluorescence spectra of two different thickness Yb:LuGG crystals at room temperature.

Fig. 9.
Fig. 9.

Emission cross-sections of Yb:LuGG samples calculated by the reciprocity method and F–L formula.

Fig. 10.
Fig. 10.

Crystalline field energy level scheme of Yb:LuGG.

Fig. 11.
Fig. 11.

Effective gain cross-sections of Yb:LuGG.

Fig. 12.
Fig. 12.

Schematic diagram of the experimental laser setup.

Fig. 13.
Fig. 13.

CW output power versus absorbed pump power for three different output couplings.

Fig. 14.
Fig. 14.

Laser emission spectra measured at Pabs=4.5W for three different output couplings.

Tables (1)

Tables Icon

Table 1. Comparison of Thermal and Spectroscopic Parameters of Yb:LuGG Crystal and Other Yb3+-Doped Garnet Crystals

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ρexp=mρwatermm,
ρtheory=MzNAa3,
k=ρcpλ,
RT=αfκ(1v)αE,
RTκα.
σem(λ)=σabs(λ)ZlZuexp(EZLhνKT),
σe(λ)=λ4I(λ)8πcn2τrI(λ)dλ,
σg(λ)=[βσem(λ)(1β)σabs(λ)],
βmin,1023nm=σabs(1023nm)σabs(1023nm)+σem(1023nm),
Isat=hcλp(σem+σabs)τr,
Imin=βmin,1023Isat,

Metrics