Abstract

A ytterbium (Yb) doped lutetium gallium garnet (Yb:Lu3Ga5O12, Yb:LuGG) single crystal has been successfully grown by the optical floating-zone method for the first time to our knowledge. Its thermal properties, including specific heat, thermal expansion coefficient, and thermal diffusion coefficient, were measured, and the thermal conductivity was determined to be 4.94Wm1K1 at room temperature. The absorption and fluorescence spectra were measured at room temperature. The stimulated emission cross-sections were calculated using the reciprocity method and Fuchtbauer–Ladenburg formula, respectively. Continuous-wave (CW) laser oscillation of the Yb:LuGG crystal was also demonstrated with a 971 nm diode laser used as the pump source, generating an output power of 3.1 W with a slope efficiency of 44%. The results of our study indicate that the Yb:LuGG crystal is a promising new laser medium, and it is expected to be comparable to the most widely used material, Yb:YAG.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription