Abstract

A Kerr-effect sensitive microcavity device based on the two-dimensional pillar-array hybrid nonlinear photonic crystal slab has been designed for all-optical switching. The cavity is made from infiltrating the void space of the pillar-array semiconductor photonic crystal slab with polystyrene. The structure parameters have been optimized by numerical simulations based on the three-dimensioanl finite-difference time-domain method. It is found that the resonant wavelength can shift 15 nm under the pump light with an intensity of 80GW/cm2, which is far larger than the shift magnitude of the holes-array nonlinear photonic crystal slab.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
    [CrossRef]
  2. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
    [CrossRef]
  3. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
    [CrossRef]
  4. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13, 7298–7303 (2005).
    [CrossRef]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
    [CrossRef]
  6. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997).
    [CrossRef]
  7. M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B: At.Mol. Opt. Phys. 41, 015401 (2008).
    [CrossRef]
  8. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, “All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect,” Opt. Lett. 30, 2254–2256 (2005).
    [CrossRef]
  9. M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [CrossRef]
  10. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
    [CrossRef]
  11. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  12. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
    [CrossRef]
  13. J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010).
    [CrossRef]
  14. J. D. Cox and M. R. Singh, “Energy splitting of resonant photonic states in nonlinear nanophotonic double waveguides,” J. Appl. Phys. 108, 083102 (2010).
    [CrossRef]
  15. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  16. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
    [CrossRef]
  17. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
    [CrossRef]
  18. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
    [CrossRef]
  19. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  20. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
    [CrossRef]
  21. T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
    [CrossRef]
  22. T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
    [CrossRef]
  23. W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20, 41–45 (2009).
    [CrossRef]
  24. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
    [CrossRef]
  25. D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011).
    [CrossRef]
  26. F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010).
    [CrossRef]
  27. F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
    [CrossRef]
  28. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
    [CrossRef]
  29. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996).
    [CrossRef]
  30. http://ab-initio.mit.edu/wiki/index.php/Meep .
  31. T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
    [CrossRef]
  32. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).
  33. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  34. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004).
    [CrossRef]
  35. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–5073 (2005).
    [CrossRef]
  36. S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
    [CrossRef]
  37. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
    [CrossRef]

2011 (1)

D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011).
[CrossRef]

2010 (4)

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010).
[CrossRef]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
[CrossRef]

J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010).
[CrossRef]

J. D. Cox and M. R. Singh, “Energy splitting of resonant photonic states in nonlinear nanophotonic double waveguides,” J. Appl. Phys. 108, 083102 (2010).
[CrossRef]

2009 (3)

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20, 41–45 (2009).
[CrossRef]

2008 (3)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B: At.Mol. Opt. Phys. 41, 015401 (2008).
[CrossRef]

2007 (3)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

2006 (1)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

2005 (6)

2004 (5)

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004).
[CrossRef]

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

2003 (1)

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

2002 (1)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

2000 (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

1997 (2)

P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997).
[CrossRef]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

1996 (1)

1995 (1)

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

1994 (1)

M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef]

1992 (1)

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Abrams, D. S.

Aitchison, J. S.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Almeida, V. R.

Anand, S.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Andreani, L. C.

D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011).
[CrossRef]

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Arakawa, Y.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004).
[CrossRef]

Asakawa, K.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Asano, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Baets, R.

Barrios, C. A.

Blau, W. J.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

Bowden, C. M.

M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef]

Boyraz, O.

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Brown, T. G.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Capasso, F.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Cho, A. Y.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Cox, J. D.

J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010).
[CrossRef]

J. D. Cox and M. R. Singh, “Energy splitting of resonant photonic states in nonlinear nanophotonic double waveguides,” J. Appl. Phys. 108, 083102 (2010).
[CrossRef]

Ding, C. Y.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

Dneprovskii, V. S.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

Dowling, J. P.

M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef]

Dumon, P.

Faist, J.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996).
[CrossRef]

Ferrini, R.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Gerace, D.

D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011).
[CrossRef]

Gong, Q. H.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

He, S.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Henari, F. Z.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

Hodson, T.

Houdre, R.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Hu, X. Y.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

Hutchinson, A. L.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Ikeda, N.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Ishikawa, H.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Jalali, B.

Jiang, P.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).

Kanamoto, K.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Karavanskii, V. A.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

Karle, T. J.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Kawanishi, T.

Koonath, P.

Krauss, T. F.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Kuramochi, E.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Lan, S.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Lee, J.-B.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20, 41–45 (2009).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

Li, Z. Y.

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
[CrossRef]

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Liang, T. K.

Lipson, M.

Lipson, R. H.

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B: At.Mol. Opt. Phys. 41, 015401 (2008).
[CrossRef]

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Liu, Y.

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010).
[CrossRef]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Mascoli, D.

D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).

Meng, Q. B.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Meng, Z. M.

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
[CrossRef]

Mitsugi, S.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Mojahedi, M.

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

Morgenstern, K.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

Morita, M.

Mulot, M.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Nair, S. V.

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
[CrossRef]

Nakamura, H.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Ndi, F. C.

Nishikawa, S.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Noda, S.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Notomi, M.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Nunes, L. R.

Panepucci, R. R.

Park, W.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20, 41–45 (2009).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

Prather, D. W.

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Priem, G. R. A.

Qin, F.

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010).
[CrossRef]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Raghunathan, V.

Ruda, H. E.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
[CrossRef]

Sabarinathan, J.

J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010).
[CrossRef]

Sakamoto, T.

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Sasagawa, K.

Scalora, M.

M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef]

Scamarcio, G.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Shinya, A.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Singh, M. R.

J. D. Cox and M. R. Singh, “Energy splitting of resonant photonic states in nonlinear nanophotonic double waveguides,” J. Appl. Phys. 108, 083102 (2010).
[CrossRef]

J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010).
[CrossRef]

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B: At.Mol. Opt. Phys. 41, 015401 (2008).
[CrossRef]

Sirtori, C.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Sivco, D. L.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Smith, C. J. M.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Sugimoto, Y.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Tanabe, T.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Tanaka, Y.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Taniyama, H.

Tokushima, M.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004).
[CrossRef]

Toulouse, J.

Tran, P.

Tsang, H. K.

Tsuchiya, M.

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Van Thourhout, D.

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996).
[CrossRef]

Vuckovic, J.

Waks, E.

Wei, Z. Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Wheeler, M. S.

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

Wild, B.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).

Wosinski, L.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Xu, M. Y. C.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

Xu, T.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
[CrossRef]

Yamada, H.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004).
[CrossRef]

Yang, H.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

Yang, S. X.

T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
[CrossRef]

Yang, T.

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

Zhang, D. Z.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

Zhu, N.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

Appl. Phys. Lett. (10)

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, “3rd-order optical nonlinearity and all-opitcal switching in porous silicon,” Appl. Phys. Lett. 67, 323–325 (1995).
[CrossRef]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “Highly confined mode above the light line in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 131116 (2009).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84, 4298–4300 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

J. Appl. Phys. (2)

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010).
[CrossRef]

J. D. Cox and M. R. Singh, “Energy splitting of resonant photonic states in nonlinear nanophotonic double waveguides,” J. Appl. Phys. 108, 083102 (2010).
[CrossRef]

J. Opt. (1)

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12, 035209 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B: At.Mol. Opt. Phys. (1)

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. B: At.Mol. Opt. Phys. 41, 015401 (2008).
[CrossRef]

Nanoscale Res. Lett. (1)

J. D. Cox, J. Sabarinathan, and M. R. Singh, “Resonant photonic states in coupled heterostructure photonic crystal waveguides,” Nanoscale Res. Lett. 5, 741–746 (2010).
[CrossRef]

Nat. Mater. (2)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Nat. Photonics (1)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Photonics News (1)

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20, 41–45 (2009).
[CrossRef]

Photon. Nanostruct. Fundam. Applic. (1)

D. Mascoli, D. Gerace, and L. C. Andreani, “Q-factor optimization for TM-like modes in pillar-based photonic crystal cavities with planar slot waveguides,” Photon. Nanostruct. Fundam. Applic. 9, 63–69 (2011).
[CrossRef]

Phys. Rev. B (3)

S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[CrossRef]

T. Xu, S. X. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations,” Phys. Rev. B 75, 125104 (2007).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

M. Scalora, J. P. Dowling, and C. M. Bowden, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef]

Science (1)

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8 micrometer wavelength) superlattice lasers,” Science 276, 773–776 (1997).
[CrossRef]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Academic, 2008).

http://ab-initio.mit.edu/wiki/index.php/Meep .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic configurations of the hybrid NPC cavity made from infiltrating polystyrene into the void space of 2D pillar array PC slab. C1, created by eliminating one pillar. C2, created by increasing one pillar’s radius. C3, created by eliminating the six nearest-neighbor pillars around the defect pillar based on the C1 cavity. C4, created by further increasing Rd based on the C2 cavity while removing the nearest-neighbor pillars around the defect pillar.

Fig. 2.
Fig. 2.

Dependence of the resonance mode frequency and the shift magnitude under pump of the cavity on (a) the pillar height and (b) the pillar radius. Comparison is made with its 2D counterpart. The black dashed line and red dashed line represent the resonance frequency and shift magnitude of the 2D counterpart structure. The pump light has an intensity of 80GW/cm2.

Fig. 3.
Fig. 3.

Schematics of the coupling waveguides that are formed by creating a line defect in the pillar array structures. (a) Wg-1 is created by reducing the radius of one row of pillars; (b) Wg-2 is created by increasing the radius of one row of pillars; (c) Wg-3 is created by eliminating one row of pillars; (d) Wg-4 is created by removing one row of pillars and inserting a conventional dielectric strip waveguide.

Fig. 4.
Fig. 4.

Schematic configuration of the cavity device that has the input and output loaded waveguides.

Fig. 5.
Fig. 5.

Electric field distribution of the optimized component when the resonance mode of the cavity device propagates through the structure.

Fig. 6.
Fig. 6.

Cavity mode shift under different permittivities of polystyrene as 2.5281 and 2.62, corresponding to the states without and with a pump light intensity of 80GW/cm2. The vertical arrow line is used to show the location of the signal light. The lattice constant is selected to be a=435nm.

Tables (1)

Tables Icon

Table 1. Transmission Characteristic of the Four Types of Waveguides

Metrics