Abstract

Quenching effects, including graphite-shell quenching and impurity quenching, on negatively charged nitrogen-vacancy (N-V) centers in fluorescent nanodiamonds (FNDs) can reduce the fluorescence quantum yield and bring about multiexponential decay fluorescence to FNDs. This causes the number of (N-V) centers to be underestimated when using the photon correlation method, which presumes identical emitters. This study proposes a method that combines time-resolved spectroscopy and photon correlation spectroscopy to modify the number measurement with the photon correlation method. The average number of (N-V) centers in 35 nm FNDs was corrected from 7.6 with the unmodified method to 11.96 with the modified method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription