Abstract

Classical analogues of the well-known effect of electromagnetically induced transparency (EIT) in quantum optics have been the subject of considerable research in recent years from microwave to optical frequencies, because of their potential applications in slow light devices, studying nonlinear effects in low-loss nanostructures, and development of low-loss metamaterials. A large variety of plasmonic structures has been proposed for producing classical EIT-like effects in different spectral ranges. The current approach for producing plasmon-induced transparency is usually based on precise design of plasmonic “molecules,” which can provide specific interacting dark and bright plasmonic modes with Fano-type resonance couplings. In this paper, we show that classical interactions of coupled plasmonic and excitonic spherical nanoparticles (NPs) can result in much more effective transparency and slow light effects in metamaterials composed of such coupled NPs. To reveal more details of the wave-particle and particle-particle interactions, the electric field distribution and field lines of Poynting vector inside and around the NPs are calculated using the finite element method. Finally, using extended Maxwell Garnett theory, we study the coupled-NP-induced transparency and slow light effects in a metamaterial comprising random mixture of silver and copper chloride (CuCl) NPs, and more effectively in a metamaterial consisting of random distribution of coated NPs with CuCl cores and aluminum shells in the UV region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
    [CrossRef]
  2. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
    [CrossRef]
  3. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
    [CrossRef]
  4. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
    [CrossRef]
  5. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef]
  6. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
    [CrossRef]
  7. S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
    [CrossRef]
  8. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [CrossRef]
  9. V. Yannopapas, and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B 74, 193304 (2006).
    [CrossRef]
  10. V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Stat. Sol. (RRL) 1, 208–210 (2007).
    [CrossRef]
  11. A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008).
    [CrossRef]
  12. V. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed. (Springer, 1984).
  13. S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
    [CrossRef]
  14. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
    [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  16. A. Panahpour and H. Latifi, “Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclusions,” Opt. Commun. 284, 1701–1710 (2011).
    [CrossRef]
  17. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008).
    [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  19. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
    [CrossRef]
  20. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004).
    [CrossRef]
  21. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef]
  23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
    [CrossRef]
  24. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
    [CrossRef]
  25. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef]
  26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
    [CrossRef]
  27. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
    [CrossRef]
  28. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13, 8372–8379 (2005).
    [CrossRef]
  29. A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1, 393–415 (2000).
    [CrossRef]
  30. Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
    [CrossRef]
  31. P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005).
    [CrossRef]
  32. C. F. Bohren and N. C. Wickramasinghe, “On the computation of optical properties of heterogeneous grains,” Astrophys. Space Sci. 50, 461–472 (1977).
    [CrossRef]
  33. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
    [CrossRef]
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  35. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical—cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  36. M. I. Markovic and A. D. Rakic, “Determination of reflection coefficients of laser light of Wavelength λ∈(0.22  μm,200  μm) from the surface of aluminum using the Lorentz-Drude model,” Appl. Opt. 29, 3479–3483 (1990).
    [CrossRef]
  37. M. I. Markovic and A. D. Rakic, “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
    [CrossRef]
  38. P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007).
    [CrossRef]
  39. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
    [CrossRef]
  40. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef]
  41. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
    [CrossRef]

2011

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

A. Panahpour and H. Latifi, “Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclusions,” Opt. Commun. 284, 1701–1710 (2011).
[CrossRef]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

2010

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[CrossRef]

2009

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef]

2008

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008).
[CrossRef]

A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008).
[CrossRef]

2007

V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Stat. Sol. (RRL) 1, 208–210 (2007).
[CrossRef]

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007).
[CrossRef]

2006

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

V. Yannopapas, and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B 74, 193304 (2006).
[CrossRef]

2005

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13, 8372–8379 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005).
[CrossRef]

2004

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004).
[CrossRef]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[CrossRef]

2003

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

2000

A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1, 393–415 (2000).
[CrossRef]

Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
[CrossRef]

1998

1990

M. I. Markovic and A. D. Rakic, “Determination of reflection coefficients of laser light of Wavelength λ∈(0.22  μm,200  μm) from the surface of aluminum using the Lorentz-Drude model,” Appl. Opt. 29, 3479–3483 (1990).
[CrossRef]

M. I. Markovic and A. D. Rakic, “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

1989

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

1977

C. F. Bohren and N. C. Wickramasinghe, “On the computation of optical properties of heterogeneous grains,” Astrophys. Space Sci. 50, 461–472 (1977).
[CrossRef]

1974

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Agranovich, V.

V. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed. (Springer, 1984).

Akyurtlu, A.

A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008).
[CrossRef]

Angkawisittpanet, N.

A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008).
[CrossRef]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

Artoni, M.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[CrossRef]

Bashevoy, M. V.

Bassani, F.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

Bettiol1, A. A.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

Bohren, C. F.

C. F. Bohren and N. C. Wickramasinghe, “On the computation of optical properties of heterogeneous grains,” Astrophys. Space Sci. 50, 461–472 (1977).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[CrossRef]

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008).
[CrossRef]

Chang-Hasnain, C. J.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007).
[CrossRef]

Chesi, S.

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

Chettiar, U. K.

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chuang, S. L.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007).
[CrossRef]

Deng, L.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Djurišic, A. B.

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

Drachev, V. P.

Economou, E. N.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef]

Elazar, J. M.

Fan, Z.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

Fedotov, V. A.

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Fofang, N. T.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

García de Abajo, F. J.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Ginzburg, V.

V. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed. (Springer, 1984).

Govorov, A. O.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Grady, N. K.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

Guérin, C. A.

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005).
[CrossRef]

Halas, N. J.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

Hranisavljevic, J.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[CrossRef]

Huang, W.-P.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004).
[CrossRef]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[CrossRef]

Kildishev, A. V.

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef]

Koschny, Th.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Kreibig, U.

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
[CrossRef]

Ku, P. C.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007).
[CrossRef]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

Kussow, A.-G.

A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008).
[CrossRef]

La Rocca, G.

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

La Rocca, G. C.

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Latifi, H.

A. Panahpour and H. Latifi, “Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclusions,” Opt. Commun. 284, 1701–1710 (2011).
[CrossRef]

Lederer, F.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Li, X.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

Mallet, P.

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005).
[CrossRef]

Manjavacas, A.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Markovic, M. I.

M. I. Markovic and A. D. Rakic, “Determination of reflection coefficients of laser light of Wavelength λ∈(0.22  μm,200  μm) from the surface of aluminum using the Lorentz-Drude model,” Appl. Opt. 29, 3479–3483 (1990).
[CrossRef]

M. I. Markovic and A. D. Rakic, “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

Mysyrowicz, A.

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

Nordlander, P.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

Panahpour, A.

A. Panahpour and H. Latifi, “Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclusions,” Opt. Commun. 284, 1701–1710 (2011).
[CrossRef]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Rakic, A. D.

Rockstuhl, C.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

Sadeghi, S. M.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004).
[CrossRef]

Sentenac, A.

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005).
[CrossRef]

Shalaev, V. M.

Sihvola, A.

A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1, 393–415 (2000).
[CrossRef]

Singh, R.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Soukoulis, C. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

Tiana, D.

Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
[CrossRef]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

Vitanov, N. V.

V. Yannopapas, and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B 74, 193304 (2006).
[CrossRef]

Wang, Q.

Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Wickramasinghe, N. C.

C. F. Bohren and N. C. Wickramasinghe, “On the computation of optical properties of heterogeneous grains,” Astrophys. Space Sci. 50, 461–472 (1977).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[CrossRef]

Wurtz, G. A.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[CrossRef]

Xionga, G.

Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Stat. Sol. (RRL) 1, 208–210 (2007).
[CrossRef]

V. Yannopapas, and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B 74, 193304 (2006).
[CrossRef]

Yuan, H.-K.

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Zhang, W.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Zheludev, N. I.

Zhoua, Z.

Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
[CrossRef]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004).
[CrossRef]

Appl. Opt.

Astrophys. Space Sci.

C. F. Bohren and N. C. Wickramasinghe, “On the computation of optical properties of heterogeneous grains,” Astrophys. Space Sci. 50, 461–472 (1977).
[CrossRef]

J. Chem. Phys.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10876 (2004).
[CrossRef]

J. Phys. D

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D 40, R93–R107 (2007).
[CrossRef]

J. Phys. F

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1014 (1974).
[CrossRef]

Nano Lett.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Nanotechnology

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle–quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Nat. Mater.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping level,” Nat. Mater. 8, 758–762 (2009)..
[CrossRef]

Opt. Commun.

A. Panahpour and H. Latifi, “Electromagnetic transparency and slow light in an isotropic 3D optical metamaterial, due to Fano-like coupling of Mie resonances in excitonic nano-sphere inclusions,” Opt. Commun. 284, 1701–1710 (2011).
[CrossRef]

Opt. Express

Opt. Laser Technol.

M. I. Markovic and A. D. Rakic, “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

Phys. Rev. B

P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005).
[CrossRef]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol1, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[CrossRef]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

V. Yannopapas, and N. V. Vitanov, “Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength,” Phys. Rev. B 74, 193304 (2006).
[CrossRef]

Phys. Rev. E

M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005).
[CrossRef]

Phys. Rev. Lett.

S. Chesi, M. Artoni, G. C. La Rocca, F. Bassani, and A. Mysyrowicz, “Polaritonic stop-band transparency via exciton-biexciton Coupling in CuCl,” Phys. Rev. Lett. 91, 057402 (2003).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef]

Phys. Scr.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Phys. Stat. Sol. (b)

A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpanet, “Optically isotropic negative index of refraction metamaterial,” Phys. Stat. Sol. (b) 245, 992–997 (2008).
[CrossRef]

Phys. Stat. Sol. (RRL)

V. Yannopapas, “Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices,” Phys. Stat. Sol. (RRL) 1, 208–210 (2007).
[CrossRef]

Physica A

Q. Wang, D. Tiana, G. Xionga, and Z. Zhoua, “A simplified model for the dielectric function of three-component composite materials,” Physica A 275, 256–261 (2000).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Subsurf. Sens. Technol. Appl.

A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1, 393–415 (2000).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

V. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed. (Springer, 1984).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1.
Fig. 1.

Real and imaginary parts of the Drude–Lorentz dielectric function curves, fitted to the experimental data of Johnson and Christy for bulk silver.

Fig. 2.
Fig. 2.

The real and imaginary parts of the uncoupled polarizabilities of individual silver and CuCl NPs with equal radii of a=10nm, in a medium with dielectric constant εh=1.6.

Fig. 3.
Fig. 3.

Total extinction coefficients of two coupled spherical silver and CuCl NPs with equal radii of a=10nm, in a medium with dielectric constant εh=1.6, for different separations of (a) R=140nm; (b) R=80nm, and (c) R=50nm. The incident electric field polarization is assumed to be parallel to the line connecting the NPs.

Fig. 4.
Fig. 4.

The minimum values of extinction coefficient inside the transparency dip, produced by two coupled silver and CuCl NPs with the same parameters as in Fig. 3, as a function of separation of the NPs.

Fig. 5.
Fig. 5.

Full-width of the transparency dip as a function of separation of two coupled silver and CuCl NPs with the same parameters and conditions as in Fig. 3.

Fig. 6.
Fig. 6.

The redshift of the minimum point of the transparency dip as a function of separation of two coupled silver and CuCl NPs with the same parameters and conditions as in Fig. 3. The redshift is calculated from the reference wavelength related to the case where the separation of the NPs is R=40nm.

Fig. 7.
Fig. 7.

Extinction coefficient of the silver NP in a plexcitonic pair with the same parameters and conditions as in Fig. 3(a).

Fig. 8.
Fig. 8.

The overall extinction coefficient (solid curve) and the extinction contributions from CuCl (dotted curve) and silver NPs (dashed curve) in a plexcitonic pair with the same parameters and conditions as in Fig. 3(a).

Fig. 9.
Fig. 9.

Real part of total polarizability (normalized to 4πa3) of the same NP pair of Fig. 3(c) (R=50nm).

Fig. 10.
Fig. 10.

The contribution of individual coupled silver and CuCl NPs to the extinction coefficient, in a plexcitonic pair, with the same parameters and conditions as in Fig. 3(c).

Fig. 11.
Fig. 11.

Total extinction coefficient (solid curve) of the same plexcitonic pair as in Fig. 10 and the contribution of individual NPs to the extinction (dashed and dotted curves).

Fig. 12.
Fig. 12.

The imaginary part of the total (coupled) polarizabilities, α1+α2 and the phase angles of α1 and α2, for the case that both of the NPs are effectively coupled to the external field (β=1) and ω2=ω1, using the parameters A/ω12=0.0851, γ1/ω1=0.0117, γ2/ω1=1.167×104, C/ω12=2.735×104.

Fig. 13.
Fig. 13.

The imaginary part of the total (coupled) polarizabilities, α1+α2 and the phase angles of α1 and α2, for the same NPs and parameters used in Fig. 12, except for the ratio, ω2/ω1=1.0018. The inset shows a closer view of the curves near ω=ω2.

Fig. 14.
Fig. 14.

The imaginary part of the total (coupled) polarizabilities, α1+α2 and the phase angles of α1 and α2, for the same NPs and parameters used in Fig. 12, except for the ratio, ω2/ω1=0.9982. The inset shows a closer view of the curves near ω=ω2.

Fig. 15.
Fig. 15.

Power flow lines in x-z plane, inside and around a single silver NP of radius a=10nm, in a medium with dielectric constant εh=1.6, at the wavelengths of (a) λ=365nm, corresponding to the LSP resonance of the NP; (b) λ=363nm, a little smaller than the wavelength of the NP’s LSP resonance peak, and (c) λ=390nm, far from the wavelength of NP’s LSP resonance peak. The plane wave propagation is in +z direction and the field polarization is parallel to the x axis. The color legends represent the z component of the Poynting vector normalized to the incident wave intensity.

Fig. 16.
Fig. 16.

Normalized (to the incident wave amplitude) electric field at the center of each NP in a plexcitonic molecule, composed of two coupled CuCl and silver NPs with the same radius of a=10nm and separation of R=30nm, in a medium with dielectric constant εh=1.6, calculated by finite element method.

Fig. 17.
Fig. 17.

Total power loss due to absorption, corresponding to a plexcitonic molecule with the same parameters and conditions as in Fig. 16, calculated by the finite element method.

Fig. 18.
Fig. 18.

Power flow lines inside and around two coupled silver (lower) and CuCl (upper) NPs with the same parameters and conditions as in Fig. 16, at different wavelengths of (a) λ=368.55nm, visualizing the mutual coupling of the NPs; (b) λ=368.56nm, where according to Fig. 17, the total absorption loss is minimum; (c) λ=368.57nm, corresponding to the minimum value of the electric field at the center of the silver NP (Fig. 16); (d) λ=368.63nm, corresponding to the maximum point of total absorption loss (Fig. 17), and (e) λ=386.52nm, near the electric quadrupole resonance peak of the CuCl NP. The color legends represent the x component of electric field normalized to the incident wave amplitude.

Fig. 19.
Fig. 19.

Real and imaginary parts of the effective dielectric function of a medium containing random distribution of spherical silver and CuCl NPs with respective diameters and volume fractions of dAg=14nm, dCuCl=20nm, fAg=0.03, and fCuCl=0.3, in a host medium with dielectric constant εh=1.6.

Fig. 20.
Fig. 20.

The group index of refraction and the imaginary part of the effective phase index of refraction as a function of wavelength, for the same medium parameters as in Fig. 16.

Fig. 21.
Fig. 21.

A NP cluster containing three-dimensional random distribution of 8 silver (blue or darker spheres) and 18 CuCl (red spheres) NPs, viewed through XY, YZ and ZX planes. All of the NPs have the same radius of a=10nm.

Fig. 22.
Fig. 22.

Normalized (to the incident power) total absorbed power by the cluster of NPs shown in Fig. 21 in a dielectric host material with dielectric constant εh=1.6, calculated at 100 discrete wavelengths using the finite element method.

Fig. 23.
Fig. 23.

Real and imaginary parts of phase index of refraction in a medium containing random distribution of core-shell NPs (CuCl cores and aluminum shells) with volume fraction f=0.3 and inner (outer) shell radius of ac=10nm (as=15nm), embedded in a host medium with dielectric constant εh=2.3.

Fig. 24.
Fig. 24.

The group index of refraction (GIR) and the imaginary part of the phase index of refraction (PIR), for the same medium described in Fig. 23.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Eloc,j=E0exp(ik·rj)+Edipole,ij,(i,j=1,2).
Edipole,j=[(1ikr)3r^·pjr^pjr3+k2pjr^·pjr^r]eikr,
εp(ω)=ε+Aγω0ωiγ,
εAg(ω,α,β)=1ωp2ω(ω+iαγ(a))+fωL2ωL2ω2iβΓLω.
Cext=kε0εh|E0|2j=1NIm(Einc,j*·pj).
Cext=kIm(j=1,2αjcoupled).
P1=α1(E0+CP2),
P2=α2(βE0+CP1).
Pj=αjE0,j=1,2
α1=α11+βCα21C2α1α2,
α2=α2β+Cα11C2α1α2.
αj=Aωj2ω2iωγj,j=1,2,
α1=(δ2iγ2ω)βC(δ1iγ1ω)(δ2iγ2ω)C2A,
α2=(δ1iγ1ω)βC(δ1iγ1ω)(δ2iγ2ω)C2A,
Im(α1+α2)=γ2(Cδ1)2+γ1γ2(γ1+γ2)ω2+γ1(δ22+C2)(δ1δ2γ1γ2ω2C2)2+(δ1γ2ω+δ2γ1ω)2>0.
εeff=εh1+2j=1nfjαje1j=1nfjαje,μeff=μh1+2j=1nfjαjm1j=1nfjαjm.
a1=mψ1(mx)ψ1(x)ψ1(mx)ψ1(x)ψ1(mx)ξ1(mx)mξ1(x)ψ1(mx),
b1=ψ1(mx)ψ1(x)mψ1(x)ψ1(mx)ψ1(mx)ξ1(mx)mξ1(x)ψ1(mx),
neff=|εeff|.|μeff|exp(i(θε+θμ)/2),
εc(ω)=1f0ωp2ω(ω+iγ0)+i=15fiωp2ω0i2ω2iγiω.
εeff=εh12f(3/2)ia1/x031+f(3/2)ia1/x03,
μeff=μh12f(3/2)ib1/x031+f(3/2)ib1/x03,
an=mψn(mx)[ψn(x)Anχn(x)]ψn(mx)[ψn(x)Anχn(x)]mξn(mx)[ψn(x)Anχn(x)]ξn(mx)[ψn(x)Anχn(x)],
bn=ψn(mx)[ψn(x)Bnχn(x)]mψn(mx)[ψn(x)Bnχn(x)]ξn(mx)[ψn(x)Bnχn(x)]mξn(mx)[ψn(x)Bnχn(x)],
An=m1ψn(m1x1)ψn(x1)ψn(m1x1)ψn(x1)m1χn(m1x1)ψn(x1)χn(m1x1)ψn(x1),
Bn=ψn(m1x1)ψn(x1)m1ψn(m1x1)ψn(x1)χn(m1x1)ψn(x1)m1χn(m1x1)ψn(x1).

Metrics