Abstract

Two-dimensional near-wavelength microstructures have been fabricated on copper film by femtosecond vector optical fields with different spatial polarization distribution, at a central wavelength of 800 nm, a pulse duration of 70fs, and a repetition rate of 1 kHz. In the induced microstructures, fine structures with interperpendicular orientations have been observed under the irradiation of a few pulses. Under the irradiation of the multipulse femtosecond vector field, differently from on the dielectric and semiconductor surfaces, the induced microstructures on the metallic copper surface exhibit an anisotropic extending feature dependent on the polarization distribution of the vector field. The physics behind this unique feature are the anisotropic excitation and propagation of surface plasmons, caused by the coupling of the subsequent irradiation pulses with the existing microstructure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef]
  2. J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987).
    [CrossRef]
  3. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
    [CrossRef]
  4. V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
    [CrossRef]
  5. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010).
    [CrossRef]
  6. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
    [CrossRef]
  7. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
    [CrossRef]
  8. T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108, 073523 (2010).
    [CrossRef]
  9. S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
    [CrossRef]
  10. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19, 9035–9043 (2011).
    [CrossRef]
  11. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
    [CrossRef]
  12. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [CrossRef]
  13. K. Lou, S. X. Qian, X. L. Wang, Y. N. Li, B. Gu, C. H. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20, 120–127 (2012).
    [CrossRef]
  14. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3552 (2007).
    [CrossRef]
  15. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
    [CrossRef]
  16. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
    [CrossRef]
  17. M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
    [CrossRef]
  18. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  19. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33, 2137–2139 (2008).
    [CrossRef]
  20. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009).
    [CrossRef]
  21. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [CrossRef]

2012 (1)

2011 (2)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19, 9035–9043 (2011).
[CrossRef]

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

2010 (4)

R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010).
[CrossRef]

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108, 073523 (2010).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

2009 (5)

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009).
[CrossRef]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

2008 (1)

2007 (2)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3552 (2007).
[CrossRef]

2006 (1)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

2004 (1)

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

2002 (1)

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

1987 (1)

J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Baba, M.

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Bestehorn, M.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Betz, M.

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

Bounhalli, M.

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

Cheng, Y.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Colombier, J. P.

Costache, F.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Ding, J. P.

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Faure, N.

Ganeev, R. A.

Garrelie, F.

Gobert, O.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

Goldenberg, B. G.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Gu, B.

Guo, C.

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108, 073523 (2010).
[CrossRef]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009).
[CrossRef]

Guo, C. S.

Hashida, M.

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

Hertel, I. V.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Huang, M.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Hwang, T. Y.

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108, 073523 (2010).
[CrossRef]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009).
[CrossRef]

Ikuta, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

Ionin, A. A.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Izawa, Y.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Korolkov, V. P.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

Kudryashov, S. I.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Kuroda, H.

Li, Y. N.

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Lou, K.

Masliy, A. I.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Medvedev, A. Z.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Miyasaka, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

Namba, S.

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Ni, W. J.

Okamuro, K.

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

Ozaki, T.

Parriaux, O.

Petite, G.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

Pigeon, F.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Preston, J. S.

J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987).
[CrossRef]

Qian, S. X.

Qiu, J. R.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Reif, J.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Reynaud, S.

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

Rotenberg, N.

Sakabe, S.

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Samsonov, R. V.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Seleznev, L. V.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Semerok, A. F.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Sinitsyn, D. V.

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Sipe, J. E.

J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987).
[CrossRef]

Stoian, R.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

Tokita, S.

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

Tokuta, S.

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

Tonchev, S.

Tu, C. H.

van Driel, H. M.

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33, 2137–2139 (2008).
[CrossRef]

J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987).
[CrossRef]

Varlamova, O.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Vorobyev, A. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009).
[CrossRef]

Wagner, J. F.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

Wang, H. T.

Wang, X. L.

Xu, N. S.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Xu, Z. Z.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Zhan, Q.

Zhao, F. L.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

ACS Nano (1)

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Surf. Sci. (2)

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, “Ablation threshold dependence on pulse duration for copper,” Appl. Surf. Sci. 197–198, 862–867 (2002).
[CrossRef]

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

J. Appl. Phys. (2)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108, 073523 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (6)

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photon-electron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79, 085425 (2009).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, “Ion emission from a metal surface through a multiphoton process and optical field ionization,” Phys. Rev. B 81, 115442 (2010).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on grating,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokuta, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79, 033409 (2009).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82, 165417 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

J. S. Preston, H. M. van Driel, and J. E. Sipe, “Order-disorder transitions in the melt morphology of laser-irradiated silicon,” Phys. Rev. Lett. 58, 69–72 (1987).
[CrossRef]

Quantum Electron. (1)

V. P. Korolkov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Masliy, A. Z. Medvedev, and B. G. Goldenberg, “Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses,” Quantum Electron. 41, 387–392 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Definitions of two parameters (R and ΔR) describing the size characteristics of the focal ring of the focused vector field. Left and right images correspond to the cases of a 2D density map and a 1D radial coordinate, respectively.

Fig. 2.
Fig. 2.

SEM images of microstructures on the copper film induced by (a) 10, (b) 20, (c) 30, and (d) 40 linearly polarized femtosecond laser pulses at a fluence of 1.83J/cm2, where the dotted-line arrow shows the polarization direction of the linearly polarized irradiation pulses and the end of the solid-line arrow shows the outer boundary of the heat-affected annular region. (e) Dimensions of the major and minor axes of the laser-induced microstructure ellipse-shaped region.

Fig. 3.
Fig. 3.

SEM images induced by the focused m=1 femtosecond vector fields with different initial phases on the copper film. Four columns from the left to the right correspond to φ0=0, π/4, π/2, and 3π/4, respectively. The first row shows the polarization and intensity distributions of the four input vector fields. The second to fourth rows show the SEM images of the induced microstructures under 10, 20, and 40 pulses, respectively.

Fig. 4.
Fig. 4.

Dependences of the dimensions of the microstructures induced by the focused m=1 vector fields on the pulse number along the (a) horizontal and (b) vertical directions.

Fig. 5.
Fig. 5.

SEM images of the microstructures induced by the focused m=1 vector field with φ0=0 under the irradiation of (a) 10, (b) 20, and (c) 30 pulses. The inset shows the intensity and polarization distributions of the input vector field.

Fig. 6.
Fig. 6.

AFM line traces of the microstructures induced by the focused vector fields under the irradiation of (a) 10 pulses and (b) 20 pulses.

Metrics