Abstract

We design and demonstrate experimentally a plasmonic directional beaming device with an expected beam angle, which consists of a slit-grooves structure in Au/Cr metal layers. The directional beaming phenomenon is achieved by modulating the phases of the radiation light diffracted by grooves from surface plasmon polariton and controlling the wavefront of the transmitted light to propagate toward the desired direction. The transmitted field through the demonstration beaming device is simulated with finite-difference time-domain method and visualized using scanning near-field optical microscope. The simulation and experimental results both show a significant directional beaming effect and are in good agreement with theoretical expectation. Such a plasmonic beaming device has potential applications in optical interconnection, display, and illumination.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  2. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
    [CrossRef]
  3. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
    [CrossRef]
  4. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
    [CrossRef]
  5. C. Zhao and J. Zhang, “Plasmonic demultiplexer and guiding,” Acs Nano 4, 6433–6438 (2010).
    [CrossRef]
  6. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
    [CrossRef]
  7. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
    [CrossRef]
  8. F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
    [CrossRef]
  9. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef]
  10. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
    [CrossRef]
  11. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
    [CrossRef]
  12. V. D. Kumar, and K. Asakawa, “Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings,” Photon. Nanostr. Fundam. Appl. 6, 148–153 (2008).
    [CrossRef]
  13. Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
    [CrossRef]
  14. J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25, 1356–1361 (2008).
    [CrossRef]
  15. J. Zhang and G. P. Wang, “Determination of thickness and dielectric constant of thin films by dual-wavelength light beaming effect of a metal nanoslit,” Appl. Phys. 106, 034305 (2009).
    [CrossRef]
  16. Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
    [CrossRef]
  17. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
    [CrossRef]
  18. L. C. Wang, Y. P. Niu, and S. Q. Gong, “Design of directional beaming from a nanoslit in metallic film surrounded by metal-dielectric surface gratings,” Photon. Nanostr. Fundam. Appl. 9, 179 (2011).
    [CrossRef]
  19. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
    [CrossRef]
  20. D. Z. Lin, T. D. Cheng, C. K. Chang, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15, 2585–2591 (2007).
    [CrossRef]
  21. H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D-Appl. Phys. 42, 045105 (2009).
    [CrossRef]
  22. K. Hwi, P. Junghyun, and L. Byoungho, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.2569–2571 (2009).
    [CrossRef]
  23. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
    [CrossRef]
  24. F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. A: Pure Appl. Opt. 13, 015002 (2011).
    [CrossRef]
  25. F. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics 5, 45–49 (2010).
    [CrossRef]
  26. FDTD Solutions, Lumerical Solutions Inc. http://www.lumerical.com .

2011

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

L. C. Wang, Y. P. Niu, and S. Q. Gong, “Design of directional beaming from a nanoslit in metallic film surrounded by metal-dielectric surface gratings,” Photon. Nanostr. Fundam. Appl. 9, 179 (2011).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. A: Pure Appl. Opt. 13, 015002 (2011).
[CrossRef]

2010

F. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics 5, 45–49 (2010).
[CrossRef]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
[CrossRef]

C. Zhao and J. Zhang, “Plasmonic demultiplexer and guiding,” Acs Nano 4, 6433–6438 (2010).
[CrossRef]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
[CrossRef]

2009

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[CrossRef]

J. Zhang and G. P. Wang, “Determination of thickness and dielectric constant of thin films by dual-wavelength light beaming effect of a metal nanoslit,” Appl. Phys. 106, 034305 (2009).
[CrossRef]

Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D-Appl. Phys. 42, 045105 (2009).
[CrossRef]

K. Hwi, P. Junghyun, and L. Byoungho, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.2569–2571 (2009).
[CrossRef]

2008

2007

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
[CrossRef]

D. Z. Lin, T. D. Cheng, C. K. Chang, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15, 2585–2591 (2007).
[CrossRef]

2006

2005

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

2003

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Asakawa, K.

V. D. Kumar, and K. Asakawa, “Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings,” Photon. Nanostr. Fundam. Appl. 6, 148–153 (2008).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D-Appl. Phys. 42, 045105 (2009).
[CrossRef]

Byoungho, L.

K. Hwi, P. Junghyun, and L. Byoungho, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.2569–2571 (2009).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D-Appl. Phys. 42, 045105 (2009).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Chang, C. K.

Chang, Y. C.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

Chen, Y. C.

D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006).
[CrossRef]

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

Cheng, T. D.

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Du, C. L.

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Fan, L.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Fan, S. H.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Fang, Z.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef]

Gong, S. Q.

L. C. Wang, Y. P. Niu, and S. Q. Gong, “Design of directional beaming from a nanoslit in metallic film surrounded by metal-dielectric surface gratings,” Photon. Nanostr. Fundam. Appl. 9, 179 (2011).
[CrossRef]

Hahn, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

Hao, F.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. A: Pure Appl. Opt. 13, 015002 (2011).
[CrossRef]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics 5, 45–49 (2010).
[CrossRef]

Huang, K. T.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

Hwi, K.

K. Hwi, P. Junghyun, and L. Byoungho, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.2569–2571 (2009).
[CrossRef]

Jiang, X. Y.

Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
[CrossRef]

Junghyun, P.

K. Hwi, P. Junghyun, and L. Byoungho, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.2569–2571 (2009).
[CrossRef]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
[CrossRef]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
[CrossRef]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
[CrossRef]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
[CrossRef]

Kuan, C. H.

Kumar, V. D.

V. D. Kumar, and K. Asakawa, “Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings,” Photon. Nanostr. Fundam. Appl. 6, 148–153 (2008).
[CrossRef]

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
[CrossRef]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
[CrossRef]

Lee, C. K.

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[CrossRef]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Liaw, J. W.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
[CrossRef]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
[CrossRef]

Lin, C.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Lin, D. Z.

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef]

Lin, M. W.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Liu, J. M.

Liu, Y. G.

Luo, X. G.

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef]

Meixner, A. J.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Niu, Y. P.

L. C. Wang, Y. P. Niu, and S. Q. Gong, “Design of directional beaming from a nanoslit in metallic film surrounded by metal-dielectric surface gratings,” Photon. Nanostr. Fundam. Appl. 9, 179 (2011).
[CrossRef]

Nordlander, P.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D-Appl. Phys. 42, 045105 (2009).
[CrossRef]

Park, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef]

Shi, H. F.

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Wang, C. T.

Wang, G. P.

J. Zhang and G. P. Wang, “Determination of thickness and dielectric constant of thin films by dual-wavelength light beaming effect of a metal nanoslit,” Appl. Phys. 106, 034305 (2009).
[CrossRef]

J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25, 1356–1361 (2008).
[CrossRef]

Wang, J.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. A: Pure Appl. Opt. 13, 015002 (2011).
[CrossRef]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics 5, 45–49 (2010).
[CrossRef]

Wang, L. C.

L. C. Wang, Y. P. Niu, and S. Q. Gong, “Design of directional beaming from a nanoslit in metallic film surrounded by metal-dielectric surface gratings,” Photon. Nanostr. Fundam. Appl. 9, 179 (2011).
[CrossRef]

Wang, R.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. A: Pure Appl. Opt. 13, 015002 (2011).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics 5, 45–49 (2010).
[CrossRef]

F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express 18, 15741–15746 (2010).
[CrossRef]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[CrossRef]

Yang, D. L.

Yeh, C. S.

Yeh, J. T.

Yu, L. B.

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

Yu, Z. F.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Zhang, D.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Zhang, J.

C. Zhao and J. Zhang, “Plasmonic demultiplexer and guiding,” Acs Nano 4, 6433–6438 (2010).
[CrossRef]

J. Zhang and G. P. Wang, “Determination of thickness and dielectric constant of thin films by dual-wavelength light beaming effect of a metal nanoslit,” Appl. Phys. 106, 034305 (2009).
[CrossRef]

J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25, 1356–1361 (2008).
[CrossRef]

Zhang, Y. L.

Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
[CrossRef]

Zhao, C.

C. Zhao and J. Zhang, “Plasmonic demultiplexer and guiding,” Acs Nano 4, 6433–6438 (2010).
[CrossRef]

Zhao, D. Y.

Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
[CrossRef]

Zhou, C. H.

Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
[CrossRef]

Zhu, X.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

Acs Nano

C. Zhao and J. Zhang, “Plasmonic demultiplexer and guiding,” Acs Nano 4, 6433–6438 (2010).
[CrossRef]

Appl. Phys.

J. Zhang and G. P. Wang, “Determination of thickness and dielectric constant of thin films by dual-wavelength light beaming effect of a metal nanoslit,” Appl. Phys. 106, 034305 (2009).
[CrossRef]

Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” Appl. Phys. 105, 113124 (2009).
[CrossRef]

Appl. Phys. Lett.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 51113 (2007).
[CrossRef]

IEEE J. Quantum Electron.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit-grooves structure,” J. Opt. A: Pure Appl. Opt. 13, 015002 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D-Appl. Phys.

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D-Appl. Phys. 42, 045105 (2009).
[CrossRef]

Nano Lett.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[CrossRef]

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11, 1676–1680 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

K. Hwi, P. Junghyun, and L. Byoungho, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.2569–2571 (2009).
[CrossRef]

Photon. Nanostr. Fundam. Appl.

L. C. Wang, Y. P. Niu, and S. Q. Gong, “Design of directional beaming from a nanoslit in metallic film surrounded by metal-dielectric surface gratings,” Photon. Nanostr. Fundam. Appl. 9, 179 (2011).
[CrossRef]

V. D. Kumar, and K. Asakawa, “Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings,” Photon. Nanostr. Fundam. Appl. 6, 148–153 (2008).
[CrossRef]

Phys. Rev. B

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405 (2005).
[CrossRef]

Phys. Rev. Lett.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

Plasmonics

F. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics 5, 45–49 (2010).
[CrossRef]

Prog. Quantum Electron.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Other

FDTD Solutions, Lumerical Solutions Inc. http://www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the plasmonic beaming device.

Fig. 2.
Fig. 2.

(a) Ex–field intensity distribution and (b) the angular distribution of field intensity in the far field.

Fig. 3.
Fig. 3.

Angular distributions of the field intensity in the far field through a series of the structures with different beam angles.

Fig. 4.
Fig. 4.

(a) AFM image of the beaming device and (b) the cross section along the dashed line in (a).

Fig. 5.
Fig. 5.

Measured field distribution in the horizontal planes at different heights.

Fig. 6.
Fig. 6.

(a) Reconstructed cross section of the transmitted field in xz plane. (b) Marked positions of the maximum field intensities at different heights in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕxϕ0+2πxλsin(θ)=2mπ,m=0,±1,±2
ϕxϕ0=0.0106x3.34.

Metrics