Abstract

One of the most significant features in the optically injected laser system is the modification of the damping of the relaxation oscillations. We derive an analytic expression for the nonlinear modification to this important laser parameter and calculate various quantities of interest using the result. In particular, this leads to a novel method to experimentally determine the free-running damping. The variation of the effective damping with detuning also explains the marked detuning dependence of the form of excitable pulsations in optically injected semiconductor lasers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
    [CrossRef]
  2. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
    [CrossRef]
  3. A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
    [CrossRef]
  4. B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
    [CrossRef]
  5. A. Gavrielides, V. Kovanis, and T. Erneux, “Low pump stability of an optically injected diode laser,” Quantum Semiclass. Opt. 9, 811–818 (1997).
    [CrossRef]
  6. G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
    [CrossRef]
  7. E. Doedel, T. Fairgrieve, B. Sandstede, A. Champneys, Yu. Kuznetsov, and X. Wang, AUTO 97, http://indy.cs.concordia.ca/auto .
  8. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002).
    [CrossRef]
  9. B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
    [CrossRef]
  10. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
    [CrossRef]
  11. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D.-Y. Cong, A. Martinez, A. Lemaître, A. Ramdane, M. Fischer, F. Gerschütz, and J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
    [CrossRef]
  12. L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
    [CrossRef]
  13. S. Wieczorek and D. Lenstra, “Spontaneously excited pulses in an optically driven semiconductor laser,” Phys. Rev. E 69, 016218 (2004).
    [CrossRef]
  14. B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
    [CrossRef]
  15. B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
    [CrossRef]

2012 (1)

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

2011 (1)

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

2010 (2)

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

2009 (1)

2007 (2)

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

2005 (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

2004 (1)

S. Wieczorek and D. Lenstra, “Spontaneously excited pulses in an optically driven semiconductor laser,” Phys. Rev. E 69, 016218 (2004).
[CrossRef]

2002 (2)

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002).
[CrossRef]

1997 (2)

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, “Low pump stability of an optically injected diode laser,” Quantum Semiclass. Opt. 9, 811–818 (1997).
[CrossRef]

1986 (1)

G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
[CrossRef]

Arecchi, F. T.

G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
[CrossRef]

Barry, L. P.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Baselga-Pascual, B.

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

Bonatto, C.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

Cong, D.-Y.

Erneux, T.

A. Gavrielides, V. Kovanis, and T. Erneux, “Low pump stability of an optically injected diode laser,” Quantum Semiclass. Opt. 9, 811–818 (1997).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

Fischer, M.

Gavrielides, A.

A. Gavrielides, V. Kovanis, and T. Erneux, “Low pump stability of an optically injected diode laser,” Quantum Semiclass. Opt. 9, 811–818 (1997).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

Gerschütz, F.

Goulding, D.

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D.-Y. Cong, A. Martinez, A. Lemaître, A. Ramdane, M. Fischer, F. Gerschütz, and J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Greene, G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Guignard, C.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Hartnett, M.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Hegarty, S. P.

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D.-Y. Cong, A. Martinez, A. Lemaître, A. Ramdane, M. Fischer, F. Gerschütz, and J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Herbert, C.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Huyet, G.

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D.-Y. Cong, A. Martinez, A. Lemaître, A. Ramdane, M. Fischer, F. Gerschütz, and J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef]

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Jones, D.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Kaszubowska-Anandarajah, A.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Kelleher, B.

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D.-Y. Cong, A. Martinez, A. Lemaître, A. Ramdane, M. Fischer, F. Gerschütz, and J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009).
[CrossRef]

Kelly, B.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Koeth, J.

Kovanis, V.

A. Gavrielides, V. Kovanis, and T. Erneux, “Low pump stability of an optically injected diode laser,” Quantum Semiclass. Opt. 9, 811–818 (1997).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002).
[CrossRef]

Lemaître, A.

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

S. Wieczorek and D. Lenstra, “Spontaneously excited pulses in an optically driven semiconductor laser,” Phys. Rev. E 69, 016218 (2004).
[CrossRef]

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002).
[CrossRef]

Lippi, G. L.

G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
[CrossRef]

Martinez, A.

McInerney, J. G.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Melnik, S.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

O’Carroll, J.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

O’Gorman, J.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Olejniczak, L.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
[CrossRef]

Oppo, G. L.

G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
[CrossRef]

Panajotov, K.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
[CrossRef]

Perry, P.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Phelan, R.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Politi, A.

G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
[CrossRef]

Rachinskii, D.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Ramdane, A.

Rasskazov, O.

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

Rensing, M.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Sciamanna, M.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
[CrossRef]

Simpson, T. B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
[CrossRef]

Thienpont, H.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
[CrossRef]

Watts, C. B.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Wendelboe, J.

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

S. Wieczorek and D. Lenstra, “Spontaneously excited pulses in an optically driven semiconductor laser,” Phys. Rev. E 69, 016218 (2004).
[CrossRef]

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002).
[CrossRef]

Electron. Lett. (1)

B. Kelly, R. Phelan, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with very narrow linewidth emission,” Electron. Lett. 43, 1282–1284 (2007).
[CrossRef]

Eur. Phys. J. D (1)

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175–179 (2010).
[CrossRef]

Opt. Commun. (1)

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Phys. Rev. A (2)

G. L. Oppo, A. Politi, G. L. Lippi, and F. T. Arecchi, “Frequency pushing in lasers with injected signal,” Phys. Rev. A 34, 4000–4007 (1986).
[CrossRef]

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010).
[CrossRef]

Phys. Rev. E (4)

S. Wieczorek and D. Lenstra, “Spontaneously excited pulses in an optically driven semiconductor laser,” Phys. Rev. E 69, 016218 (2004).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011).
[CrossRef]

S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, “Global quantitative predictions of complex laser dynamics,” Phys. Rev. E 65, 045207 (2002).
[CrossRef]

B. Kelleher, D. Goulding, B. Baselga-Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002).
[CrossRef]

Quantum Semiclass. Opt. (1)

A. Gavrielides, V. Kovanis, and T. Erneux, “Low pump stability of an optically injected diode laser,” Quantum Semiclass. Opt. 9, 811–818 (1997).
[CrossRef]

Other (1)

E. Doedel, T. Fairgrieve, B. Sandstede, A. Champneys, Yu. Kuznetsov, and X. Wang, AUTO 97, http://indy.cs.concordia.ca/auto .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Two oscillating decays of R following perturbations (solid and blue) and the exponential part of the decay as predicted by Eq. (12) (dotted and red). For the left figure, the parameters were K = 0.001 , Δ = 0.001 , α = 2 , P = 0.5 , and γ = 0.002 . The effective damping in this case is Γ eff = 0.0007 . For the right figure, the parameters were K = 0.02 , Δ = 0.01 , α = 2 , P = 0.5 , and γ = 0.1 . The effective damping in this case is Γ eff = 0.07758 .

Fig. 2.
Fig. 2.

Numerically calculated stability diagram for the full model with γ = 0.002 , α = 2 , and P = 0.5 . The solid (blue) curve is the saddle-node bifurcation. The dashed (red) curve is the Hopf bifurcation. The vertical dotted–dashed line indicates the detuning Δ FH as calculated from Eq. (16) and agrees extremely well with the codimension-2 fold-Hopf intersection as found using the full model. The horizontal dotted–dashed line shows the value of K c as calculated using Eq. (18) and meets the Hopf curve at the minimum, again in excellent agreement with the full model.

Fig. 3.
Fig. 3.

Two numerical traces of the intensity. The left shows the behavior for negative detuning ( Δ = 0.025 ) and the right for zero detuning. The parameters used were K = 0.01 , α = 3 , P = 0.5 , γ = 0.02 , η = 0.07 in both cases.

Fig. 4.
Fig. 4.

Two numerical traces showing excitable behavior stimulated by instantaneous perturbations. The left shows the time series near the negative detuning boundary, and the right shows the time series near the positive detuning boundary. Instantaneous perturbations were applied to the phase to excite the pulses/phase-slips. The phase angle is defined as ψ = ϕ ϕ mod ( 2 π ) . The parameters used were K = 0.01 , α = 3 , P = 0.5 , γ = 0.02 in both cases. For the left (right) figure, Δ = 0.0435 (0.0459). In both figures ψ is represented by the thick line and the intensity by the thin line.

Fig. 5.
Fig. 5.

Two numerical traces showing excitable behavior stimulated by noise. The left shows the behavior near the negative detuning boundary and the right near the positive detuning boundary. The phase angle is defined as ψ = ϕ ϕ mod ( 2 π ) . The parameters used were K = 0.01 , α = 3 , P = 0.5 , γ = 0.02 , η = 0.07 in both cases. For the left (right) figure, Δ = 0.0435 (0.0459). In both figures ψ is represented by the thick line and the intensity by the thin line.

Fig. 6.
Fig. 6.

Two experimental traces showing excitable behavior. The left shows the time series near the negative detuning boundary, and the right shows the time series near the positive detuning boundary ( | Δ | 5 GHz in both cases). The phase angle is defined as ψ = ϕ ϕ mod ( 2 π ) . The qualitative agreement with the numerical simulations shown in Fig. 5 is excellent. In both figures ψ is represented by the thick line and the intensity by the thin line.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

R ˙ = N R + K cos ϕ ,
ϕ ˙ = Δ + α N K R sin ϕ ,
N ˙ = γ ( P N ( 1 + 2 N ) R 2 ) ,
N = P R 2 1 + 2 R 2 ,
Δ = K R 1 + α 2 sin ( ϕ + ϕ 0 ) ,
K 2 R 2 = N 2 + ( Δ α N ) 2 ,
λ 3 + C 1 λ 2 + C 2 λ + C 3 = 0 ,
C 1 = 2 N + γ ( 1 + 2 P 1 + 2 N ) , C 2 = 2 N γ ( 1 + 2 P 1 + 2 N ) + N 2 + 2 γ ( P N ) + ( Δ α N ) 2 , C 3 = 2 γ ( P N ) [ N α ( Δ α N ) ] + γ ( 1 + 2 P 1 + 2 N ) [ N 2 + ( Δ α N ) 2 ] .
C 2 = 2 ε σ P
Γ eff = C 1 C 2 C 3 2 C 2
Γ eff = 1 2 ( ε σ ( 1 + 2 P ) ε ( 1 α 2 ) n ε α δ )
Γ eff = Γ RO + K 2 P 1 + α 2 cos ( ϕ ϕ 0 ) ,
Δ = K R 1 + α 2 sin ( ϕ + ϕ 0 ) .
Δ SN = K P 1 + α 2
( Γ eff ) SN Γ RO Δ SN α 1 + α 2 .
Δ FH = 1 + α 2 α Γ RO
| K 2 P 1 + α 2 cos ( ϕ ϕ 0 ) | = Γ RO .
K c = 2 P 1 + α 2 Γ RO .
| ( Δ SN ) c | = 1 + α 2 K c P .
Γ RO = 1 2 | ( Δ SN ) c | .

Metrics