Abstract

We present the design and characterization of a wide-angle optical absorber in the near infrared regime, based on an optical board embedded with periodic optical black holes using graded index photonic crystals. The implementation of the proposed system is validated within the lowest band. The finite element method is employed to simulate the electromagnetic wave propagation of the designed device. Moreover, the influences of the angles of wave incidence and periods of optical black holes on absorption efficiency are studied. The results show that the optical absorber using a thin metal coating at the bottom exhibits a high-efficiency absorption performance over a wide range of angles. Since the optical black hole is composed of the full dielectric materials, it eases the experimental fabrication.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
    [CrossRef]
  2. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009).
    [CrossRef]
  3. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
    [CrossRef]
  4. L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009).
    [CrossRef]
  5. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  6. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  8. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
    [CrossRef]
  9. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
    [CrossRef]
  10. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18, 6598–6603 (2010).
    [CrossRef]
  11. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef]
  12. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [CrossRef]
  13. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
    [CrossRef]
  14. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
    [CrossRef]
  15. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
    [CrossRef]
  16. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B 27, 2020–2025 (2010).
    [CrossRef]
  17. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
    [CrossRef]
  18. W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
    [CrossRef]
  19. H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011).
    [CrossRef]
  20. J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011).
    [CrossRef]
  21. K. V. Nerkararyan, S. K. Nerkararyan, and S. I. Bozhevolnyi, “Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons,” Opt. Lett. 36, 4311–4313 (2011).
    [CrossRef]
  22. E. W. Marchand, Gradient Index Optics (Academic, 1978).
  23. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).
  24. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
    [CrossRef]
  25. H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
    [CrossRef]
  26. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef]
  27. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef]
  28. E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006).
    [CrossRef]
  29. H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240–1253 (2007).
    [CrossRef]
  30. A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
    [CrossRef]
  31. E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29, 1937–1943 (2011).
    [CrossRef]
  32. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
    [CrossRef]
  33. B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110, 053103 (2011).
    [CrossRef]
  34. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  35. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).
  36. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  37. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  38. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).
  39. M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
    [CrossRef]

2012 (1)

M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
[CrossRef]

2011 (6)

B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110, 053103 (2011).
[CrossRef]

E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29, 1937–1943 (2011).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011).
[CrossRef]

J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011).
[CrossRef]

K. V. Nerkararyan, S. K. Nerkararyan, and S. I. Bozhevolnyi, “Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons,” Opt. Lett. 36, 4311–4313 (2011).
[CrossRef]

2010 (7)

C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18, 6598–6603 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
[CrossRef]

C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B 27, 2020–2025 (2010).
[CrossRef]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

2009 (10)

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009).
[CrossRef]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

2008 (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

2007 (1)

2006 (1)

E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006).
[CrossRef]

2005 (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef]

1983 (1)

Albert, J. P.

E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006).
[CrossRef]

Alexander, R. W.

Argyropoulos, C.

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Bao, C.

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).

Bozhevolnyi, S. I.

Caer, C.

Caglayan, H.

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Cakmak, A. O.

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

Cassagne, D.

E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006).
[CrossRef]

Cassan, E.

Centeno, E.

E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006).
[CrossRef]

Chen, H.

W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Chen, L. W.

H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011).
[CrossRef]

Chen, X.

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Citrin, D. S.

Colak, E.

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

Dai, L.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Do, K. V.

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Feng, Q.

Gajic, R.

B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110, 053103 (2011).
[CrossRef]

B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
[CrossRef]

Genov, D. A.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

Gomez-Reino, C.

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Han, H. X.

M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
[CrossRef]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Hao, Y.

Hingerl, K.

Hsu, P. F.

J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011).
[CrossRef]

Hu, C.

Isic, G.

Jiang, C.

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

Jin, J. F.

W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Kallos, E.

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Kurt, H.

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240–1253 (2007).
[CrossRef]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Li, D. C.

M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
[CrossRef]

Li, X.

Lin, Z.

W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Liu, L.

Liu, L. H.

J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011).
[CrossRef]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Long, L. L.

Lu, W.

W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Luo, X.

Ma, H. F.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

Marchand, E. W.

E. W. Marchand, Gradient Index Optics (Academic, 1978).

Marris-Morini, D.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Nerkararyan, K. V.

Nerkararyan, S. K.

Ordal, M. A.

Ozbay, E.

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Perez, M. V.

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Qiu, J.

J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011).
[CrossRef]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Schurig, D.

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Tian, X. Y.

M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
[CrossRef]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Vasic, B.

B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110, 053103 (2011).
[CrossRef]

B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
[CrossRef]

Vivien, L.

Wang, H. W.

H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Ward, C. A.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).

Xu, H. S.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef]

Yang, X. M.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

Yin, M.

M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
[CrossRef]

Zhang, S.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

Zhang, X.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Zhao, Z.

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, “Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime,” Appl. Phys. Lett. 100, 124101 (2012).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

J. Appl. Phys. (4)

W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011).
[CrossRef]

A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105, 103708 (2009).
[CrossRef]

B. Vasic and R. Gajic, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110, 053103 (2011).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Qiu, L. H. Liu, and P. F. Hsu, “Radiative properties of optical board embedded with optical black holes,” J. Quant. Spectrosc. Radiat. Transfer 112, 832–838 (2011).
[CrossRef]

Nat. Phys. (1)

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (7)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006).
[CrossRef]

Phys. Rev. E (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Other (5)

E. W. Marchand, Gradient Index Optics (Academic, 1978).

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Scheme of the designed wide-angle absorber based on a 2D optical board embedded with periodic optical black holes. (b) The computational domain for 2D FE simulation with the PML boundary conditions in y direction and the periodic boundary conditions in x direction. A thin metal film is coated at the bottom layer. R, Rc, Λ, and h are the outer shell radius, the inner core radius, the period of optical black holes, and the height of the optical board.

Fig. 2.
Fig. 2.

(a) Dispersion curves along Γ-X direction of PCs for different radii. (b) The effective refractive indices of PCs for different radii as a function of normalized frequency.

Fig. 3.
Fig. 3.

Electric field distributions for (a) an optical black hole based on theoretical description and (b) one with GRIN PCs at a wavelength of 1.5 μm. A Gaussian beam source is incident on the device off-center. (c) Absorption spectra of the optical black hole with GRIN PCs and based on theoretical description.

Fig. 4.
Fig. 4.

(a) Absorption, reflection, and transmission spectra of the optical board embedded with periodic optical black holes using GRIN PCs for the incident angle θ=0° and the period Λ=12μm. (b) The power flow distribution at a wavelength of 1.5 μm.

Fig. 5.
Fig. 5.

Absorption spectra of the optical board embedded with periodic optical black holes using GRIN PCs for various angles of incidence. The periods: (a) Λ=12μm, (b) Λ=16μm, (c) Λ=20μm, and (d) Λ=24μm.

Fig. 6.
Fig. 6.

Absorption for various angles of incidence as a function of period. The working wavelength is 1.4 μm.

Fig. 7.
Fig. 7.

Absorption for various angles of incidence as a function of the height of the optical board. The working wavelength is 1.4 μm. The periods: (a) Λ=16μm, (b) Λ=20μm, and (c) Λ=24μm.

Fig. 8.
Fig. 8.

Absorption spectra of the optical board with and without the thin metal layer for various periods at the incident angles (a) θ=20° and (b) θ=40°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(r)={εb,r>R,R2r2,Rc<r<R,εc+iγ,r<Rc.
rij=anij2εbπ(εrεb),
P=12Re(sE×H*·ds).

Metrics