Abstract

We propose a deterministic scheme to realize N-atom Greenberger–Horne–Zeilinger (GHZ) state analyzer based on the cavity input–output process. In the scheme, we construct a two-qubit parity analyzer and a GHZ-state phase analyzer and show that all the N-atom GHZ states can be completely identified in a nondestructive way by combining these two kinds of analyzers. The fidelities of our analyzers are also calculated, which show that our scheme has a high performance in theory. The scheme opens promising perspectives for achieving efficient large-scale quantum communication and quantum information processing networks.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  3. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef]
  5. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
    [CrossRef]
  6. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
    [CrossRef]
  7. H. A. Engel and D. Loss, “Fermionic Bell-state analyzer for spin qubits,” Science 309, 586–588 (2005).
    [CrossRef]
  8. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
    [CrossRef]
  9. X. L. Zhang, M. Feng, and K. L. Gao, “Cluster-state preparation and multipartite entanglement analyzer with fermions,” Phys. Rev. A 73, 014301 (2006).
    [CrossRef]
  10. Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
    [CrossRef]
  11. J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
    [CrossRef]
  12. J. Qian, X. L. Feng, and S. Q. Gong, “Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection,” Phys. Rev. A 72, 052308 (2005).
    [CrossRef]
  13. J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
    [CrossRef]
  14. X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
    [CrossRef]
  15. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811(2003).
    [CrossRef]
  16. Y. Wu and X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601(2007).
    [CrossRef]
  17. X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012).
    [CrossRef]
  18. C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
    [CrossRef]
  19. X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
    [CrossRef]
  20. L. M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003).
    [CrossRef]
  21. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [CrossRef]
  22. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
    [CrossRef]
  23. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
    [CrossRef]
  24. X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
    [CrossRef]
  25. F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
    [CrossRef]
  26. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
    [CrossRef]
  27. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef]
  28. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
    [CrossRef]

2012

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012).
[CrossRef]

2011

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

2010

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

2009

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

2008

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

2007

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[CrossRef]

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

Y. Wu and X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601(2007).
[CrossRef]

2006

X. L. Zhang, M. Feng, and K. L. Gao, “Cluster-state preparation and multipartite entanglement analyzer with fermions,” Phys. Rev. A 73, 014301 (2006).
[CrossRef]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

2005

J. Qian, X. L. Feng, and S. Q. Gong, “Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection,” Phys. Rev. A 72, 052308 (2005).
[CrossRef]

H. A. Engel and D. Loss, “Fermionic Bell-state analyzer for spin qubits,” Science 309, 586–588 (2005).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

2004

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

2003

L. M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811(2003).
[CrossRef]

2000

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef]

1999

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

1998

J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1992

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Bai, J.

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

Barrett, S. D.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

Beausoleil, R. G.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Chen, M. Y.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Chen, Q.

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Chen, X. D.

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

Chen, Z. H.

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Cheng, L. Y.

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Deng, F. G.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

L. M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Engel, H. A.

H. A. Engel and D. Loss, “Fermionic Bell-state analyzer for spin qubits,” Science 309, 586–588 (2005).
[CrossRef]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Feng, M.

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
[CrossRef]

X. L. Zhang, M. Feng, and K. L. Gao, “Cluster-state preparation and multipartite entanglement analyzer with fermions,” Phys. Rev. A 73, 014301 (2006).
[CrossRef]

Feng, X. L.

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

J. Qian, X. L. Feng, and S. Q. Gong, “Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection,” Phys. Rev. A 72, 052308 (2005).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Gao, J.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Gao, K. L.

X. L. Zhang, M. Feng, and K. L. Gao, “Cluster-state preparation and multipartite entanglement analyzer with fermions,” Phys. Rev. A 73, 014301 (2006).
[CrossRef]

Gong, S. Q.

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

J. Qian, X. L. Feng, and S. Q. Gong, “Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection,” Phys. Rev. A 72, 052308 (2005).
[CrossRef]

Guo, G. C.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Guo, Q.

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

Han, Z. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Imoto, N.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Karlsson, A.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

L. M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Koashi, M.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Kok, P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

Kuzmich, A.

L. M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Li, X. H.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Lin, G. W.

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

Lin, X. M.

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Long, G. L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Loss, D.

H. A. Engel and D. Loss, “Fermionic Bell-state analyzer for spin qubits,” Science 309, 586–588 (2005).
[CrossRef]

Mei, D.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[CrossRef]

Mei, F.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
[CrossRef]

Munro, W. J.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

Nemoto, K.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

Ni, B. B.

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

Oh, C. H.

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

Pan, J. W.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Preskill, J.

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef]

Qian, J.

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

J. Qian, X. L. Feng, and S. Q. Gong, “Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection,” Phys. Rev. A 72, 052308 (2005).
[CrossRef]

Qian, Y.

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

Saldana, J.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811(2003).
[CrossRef]

Shao, X. Q.

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012).
[CrossRef]

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

Shor, P. W.

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef]

Song, H. S.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[CrossRef]

Spiller, T. P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Wang, H. F.

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wu, Y.

Y. Wu and X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601(2007).
[CrossRef]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811(2003).
[CrossRef]

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Xiao, Y. F.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Xue, P.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Yang, T.

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

Yang, X.

Y. Wu and X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601(2007).
[CrossRef]

Yang, Y.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Ye, M. Y.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Yi, X. X.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[CrossRef]

Yu, C. S.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[CrossRef]

Yu, Y. F.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
[CrossRef]

Zeilinger, A.

J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

Zhang, S.

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012).
[CrossRef]

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

Zhang, X. L.

X. L. Zhang, M. Feng, and K. L. Gao, “Cluster-state preparation and multipartite entanglement analyzer with fermions,” Phys. Rev. A 73, 014301 (2006).
[CrossRef]

Zhang, Z. M.

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
[CrossRef]

Zheng, T. Y.

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012).
[CrossRef]

Zhou, Z. W.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Zhu, S. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Zhu, Y.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811(2003).
[CrossRef]

Europhys. Lett.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Opt. Commun.

X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009).
[CrossRef]

Phys. Rev. A

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811(2003).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012).
[CrossRef]

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[CrossRef]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

L. M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[CrossRef]

X. L. Zhang, M. Feng, and K. L. Gao, “Cluster-state preparation and multipartite entanglement analyzer with fermions,” Phys. Rev. A 73, 014301 (2006).
[CrossRef]

Q. Guo, J. Bai, L. Y. Cheng, X. Q. Shao, H. F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011).
[CrossRef]

J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

J. Qian, X. L. Feng, and S. Q. Gong, “Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection,” Phys. Rev. A 72, 052308 (2005).
[CrossRef]

J. Qian, Y. Qian, X. L. Feng, T. Yang, and S. Q. Gong, “Generation and discrimination of Greenberger–Horne–Zeilinger states using dipole-induced transparency in a cavity-waveguide system,” Phys. Rev. A 75, 032309 (2007).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A 80, 042319 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

Phys. Rev. Lett.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Y. Wu and X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601(2007).
[CrossRef]

Science

H. A. Engel and D. Loss, “Fermionic Bell-state analyzer for spin qubits,” Science 309, 586–588 (2005).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Level structure of trapped atoms, where |e is the excited state, and |0 and |1 are the two ground states of the atom, respectively. The transition |0|e is resonantly coupled to the cavity mode with |h polarization light. (b) Schematic for the CPF gate between the atom and the photon. S is the π/4 phase shifter. The |h polarization component of an input single-photon pulse driving the cavity mode is reflected by the cavity, while the |v polarization component is reflected via the mirror M.

Fig. 2.
Fig. 2.

Atomic two-qubit parity analyzer. C1 and C2 are the circulators, PBS1 and PBS2 are polarization beam splitters, HWP is half-wave plate, S1 and S2 are the π/4 phase shifters, and D1 and D2 are conventional photon detectors that cannot distinguish a single photon from two or more photons and can only distinguish between the presence and absence of photons. The photon pulse passes through two paths; one is port-PBS1-C1-S1-cavity 1-S1-C1-C2-S2-cavity 2-S2-C2-HWP-PBS2-D1(D2), and the other one is port-PBS1-M-HWP-PBS2-D1(D2).

Fig. 3.
Fig. 3.

Schematic diagram of GHZ-state phase analyzer. The oblique curves denote a laser that can realize an H^ operation, which changes atom state |0 into (|0+|1)/2 or |1 into (|0|1)/2. Every atom needs suffer two H^ operations. The first H^ operation is before the photon pulse reaches the cavity, and the second is after the pulse is reflected by the cavity. The photon pulse also has two paths; one is port-PBS1-C1-S-cavity 1-S-C1-C2-S-cavity 2-S-C2--HWP-PBS2-D1(D2), and the other is port-PBS1-M-HWP-PBS2-D1(D2).

Fig. 4.
Fig. 4.

Schematic diagram of N-atom GHZ-state analyzer. The first long box denotes the phase analyzer, and the remainder denote parity analyzers.

Fig. 5.
Fig. 5.

Fidelities of even (black curve) and odd (red curve) parity analyzers change with the ratio κ/γ.

Fig. 6.
Fig. 6.

Fidelity of phase analyzer for N-atom GHZ state |Ψ0+12N. It is a function of the ratio κ/γ and atom number N.

Fig. 7.
Fig. 7.

Whole fidelity Fwhole of our scheme for the state |Ψ0+12N.

Tables (1)

Tables Icon

Table 1. Measurement Results of the Incident Photons Corresponding to Different Initial GHZ States

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U^CPF=eiπ|11||hh|,
|ψ12=α|0012+β|0112+γ|1012+δ|1112,
|hHWP12(|h+|v),|vHWP12(|h|v).
12(|h+|v)(α|0012+β|0112+γ|1012+δ|1112)H^(HWP)U^CPF2U^CPF1|h(α|0012+δ|1112)|v(β|0112+γ|1012).
UCNOT=I1H^2U^CPFI1H^2,
|Ψ0±123=12(|000123±|111123),|Ψ1±123=12(|100123±|011123),|Ψ2±123=12(|010123±|101123),|Ψ3±123=12(|001123±|110123).
12(|h+|v)|Ψi+123=12(|h+|v)(|μνχ123+|μ¯ν¯χ¯123)UCNOT3,UCNOT2,UCNOT112[|h(|μ¯ν¯χ¯123+|μνχ123)+|v(|μνχ123+|μ¯ν¯χ¯123)]HWP12|h(|μνχ123+|μ¯ν¯χ¯123)=|h|Ψi+123.
12(|h+|v)|Ψi123=12(|h+|v)(|μνχ123|μ¯ν¯χ¯123)UCNOT3,UCNOT2,UCNOT112[|h(|μ¯ν¯χ¯123|μνχ123)+|v(|μνχ123|μ¯ν¯χ¯123)]HWP12|v(|μνχ123|μ¯ν¯χ¯123)=|v|Ψi123.
Feven=(1+R+R2)2(1+R)4,Fodd=R2(1+R)2,Fphase=[(1+R)N+RN+(1)N]24(1+R)2N,Fwhole=[(1+R)N+RN+(1)N]2[(1+R)2N2+(1+R2)N1]216(1+R)6N4,

Metrics