Abstract

Detrimental thermal effects affecting optical performances of a Nd:YVO4 bounce laser amplifier are investigated numerically under small-signal gain conditions. Thermally induced lens is stronger due to the increase of the fractional thermal loading with the pump irradiance, which is caused by the Auger energy-transfer upconversion (ETU). At a pump power of 100 W, the focal length of the thermal lens (TL) is comparable to the length of the laser crystal and is shorter than without Auger ETU by a factor of 3 and 2.5 in the bounce plane and, respectively, in the plane orthogonal to bounce. This deleterious influence of Auger ETU on the TL of the bounce laser amplifier can be alleviated by the increase of the pump spot area and by the mismatch between the diode pump spectrum and the absorption band of the crystal.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93–B105 (2010).
    [CrossRef]
  2. W. Koechner, Solid State Lasers Engineering (Springer, 2006), pp. 474–477.
  3. M. K. Reed, W. J. Kozlowski, R. L. Byer, G. L. Harnagel, and P. S. Cross, “Diode-laser-array-pumped neodymium slab oscillator,” Opt. Lett. 13, 204–206 (1988).
    [CrossRef]
  4. J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
    [CrossRef]
  5. J. E. Bernard, E. McCullough, and A. J. Alcock, “High gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994).
    [CrossRef]
  6. M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
    [CrossRef]
  7. A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
    [CrossRef]
  8. A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230, 191–195 (2004).
    [CrossRef]
  9. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
    [CrossRef]
  10. A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).
  11. T. Omatsu, Y. Ojima, A. Minassian, and M. J. Damzen, “Power scaling of a highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005).
    [CrossRef]
  12. S. P. Chard and M. J. Damzen, “Compact architecture for power scaling bounce geometry lasers,” Opt. Express 17, 2218–2223 (2009).
    [CrossRef]
  13. K. Nawata, M. Okida, K. Furuki, K. Miyamoto, and T. Omatsu, “Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier,” Opt. Express 17, 20816–20823 (2009).
    [CrossRef]
  14. A. Agnesi and F. Pirzio, “High gain solid-state amplifiers for picosecond pulses,” in Advances in Solid-State Lasers: Development and Applications, M. Grishin, ed. (INTECH, 2010), Chap. 11.
  15. Ş. A. Amarande and M. J. Damzen, “Measurement of thermal lens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier,” Opt. Commun. 265, 306–313 (2006).
    [CrossRef]
  16. M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
    [CrossRef]
  17. A. E. Siegman, Lasers (University Science Books, 1986), pp. 301–303.
  18. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
    [CrossRef]
  19. P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
    [CrossRef]
  20. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43, 4753–4767 (2004).
    [CrossRef]
  21. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
    [CrossRef]
  22. A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave Nd:YVO4 at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317(2000).
    [CrossRef]
  23. S. A. Payne, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
    [CrossRef]
  24. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
    [CrossRef]
  25. L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
    [CrossRef]
  26. R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
    [CrossRef]
  27. G. Smith and M. J. Damzen, “Spatially-selective amplified spontaneous emission derived from an ultrahigh gain solid-state amplifier,” Opt. Express 14, 3318–3323 (2006).
    [CrossRef]
  28. G. Turri, H. P. Jenssen, F. Cornachia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088(2009).
    [CrossRef]
  29. X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
    [CrossRef]
  30. J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).
  31. X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
    [CrossRef]
  32. J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
    [CrossRef]
  33. Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid processes,” IEEE J. Quantum Electron. 11, 613–620 (2005).
    [CrossRef]
  34. V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. (Amsterdam) 24, 353–368 (2003).
    [CrossRef]
  35. Using the data from Ref. [33], we estimate a fluorescence lifetime of 83 μs for 1.1 at. % Nd:YVO4.
  36. J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.
  37. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
    [CrossRef]
  38. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2009).
  39. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference on Lasers and Electro-Optics/QELS Conference (OSA, 2007), 1–5, 1524–1525.
  40. COMSOL Multiphysics, a finite element analysis software by COMSOL, http://www.comsol.com .
  41. In [15], similarly to [32], there was the same difference between λp and the nominal value of the pump wavelength (808.0 nm).
  42. The bounce angle θ=7° in Ref. [15] and not 9°.
  43. J. Morgenweg and K. S. E. Eikma, “Tailored pulse sequences from an 880 nm pumped Nd:YVO4 bounce amplifier,” Opt. Lett. 37, 208–210 (2012).
    [CrossRef]

2012

2010

2009

2008

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

2007

M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
[CrossRef]

2006

G. Smith and M. J. Damzen, “Spatially-selective amplified spontaneous emission derived from an ultrahigh gain solid-state amplifier,” Opt. Express 14, 3318–3323 (2006).
[CrossRef]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Ş. A. Amarande and M. J. Damzen, “Measurement of thermal lens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier,” Opt. Commun. 265, 306–313 (2006).
[CrossRef]

2005

T. Omatsu, Y. Ojima, A. Minassian, and M. J. Damzen, “Power scaling of a highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid processes,” IEEE J. Quantum Electron. 11, 613–620 (2005).
[CrossRef]

2004

A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230, 191–195 (2004).
[CrossRef]

S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43, 4753–4767 (2004).
[CrossRef]

2003

A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
[CrossRef]

V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. (Amsterdam) 24, 353–368 (2003).
[CrossRef]

2002

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).

2001

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

2000

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave Nd:YVO4 at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317(2000).
[CrossRef]

1999

P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

1998

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
[CrossRef]

1994

1993

1988

Aboites, V.

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

Agnesi, A.

A. Agnesi and F. Pirzio, “High gain solid-state amplifiers for picosecond pulses,” in Advances in Solid-State Lasers: Development and Applications, M. Grishin, ed. (INTECH, 2010), Chap. 11.

Alcock, A. J.

J. E. Bernard, E. McCullough, and A. J. Alcock, “High gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994).
[CrossRef]

J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef]

Amarande, S. A.

Ş. A. Amarande and M. J. Damzen, “Measurement of thermal lens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier,” Opt. Commun. 265, 306–313 (2006).
[CrossRef]

Bass, M.

Beach, R. J.

Bermudez G., J. C.

J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).

Bernard, J. E.

J. E. Bernard, E. McCullough, and A. J. Alcock, “High gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994).
[CrossRef]

J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993).
[CrossRef]

Bjurshagen, S.

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Byer, R. L.

Chai, B. H. T.

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

S. A. Payne, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef]

Chard, S. P.

Chen, Y. F.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Clarkson, W. A.

P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.

Cornachia, F.

Crofts, G. J.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Cross, P. S.

Damzen, M. J.

S. P. Chard and M. J. Damzen, “Compact architecture for power scaling bounce geometry lasers,” Opt. Express 17, 2218–2223 (2009).
[CrossRef]

G. Smith and M. J. Damzen, “Spatially-selective amplified spontaneous emission derived from an ultrahigh gain solid-state amplifier,” Opt. Express 14, 3318–3323 (2006).
[CrossRef]

Ş. A. Amarande and M. J. Damzen, “Measurement of thermal lens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier,” Opt. Commun. 265, 306–313 (2006).
[CrossRef]

T. Omatsu, Y. Ojima, A. Minassian, and M. J. Damzen, “Power scaling of a highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
[CrossRef]

A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230, 191–195 (2004).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
[CrossRef]

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

DeLoach, L. D.

Dominiak-Dzik, G.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Eikma, K. S. E.

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Fornasiero, L.

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

Furuki, K.

Garcia-Lopez, J. H.

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

Gong, M.

X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
[CrossRef]

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

Harnagel, G. L.

He, F.

X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
[CrossRef]

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

Holmgren, S.

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

Huang, L.

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

Huber, G.

Itoh, M.

M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
[CrossRef]

Jensen, T.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
[CrossRef]

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Jenssen, H. P.

Kim, J. W.

J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.

Kir’yanov, A. V.

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).

Koch, R.

Koechner, W.

W. Koechner, Solid State Lasers Engineering (Springer, 2006), pp. 474–477.

Kozlowski, W. J.

Kränkel, C.

Krupke, W. F.

Kueck, S.

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

Kway, W. L.

Lan, Y. P.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Liao, C. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Lisiecki, R.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Liu, Q.

X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
[CrossRef]

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

Lukasiewicz, T.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Lupei, V.

V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. (Amsterdam) 24, 353–368 (2003).
[CrossRef]

McCullough, E.

J. E. Bernard, E. McCullough, and A. J. Alcock, “High gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994).
[CrossRef]

Meyn, J.-P.

Minassian, A.

T. Omatsu, Y. Ojima, A. Minassian, and M. J. Damzen, “Power scaling of a highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).

A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230, 191–195 (2004).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
[CrossRef]

Miyamoto, K.

Morgenweg, J.

Musgrave, I. O.

J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.

Nawata, K.

Noginov, M. A.

Ojima, Y.

Okida, M.

K. Nawata, M. Okida, K. Furuki, K. Miyamoto, and T. Omatsu, “Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier,” Opt. Express 17, 20816–20823 (2009).
[CrossRef]

M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
[CrossRef]

Omatsu, T.

Onouchi, A.

M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
[CrossRef]

Ostroumov, V.

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2009).

Payne, S. A.

Petermann, K.

Pinto-Robledo, V. J.

J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).

Pirzio, F.

A. Agnesi and F. Pirzio, “High gain solid-state amplifiers for picosecond pulses,” in Advances in Solid-State Lasers: Development and Applications, M. Grishin, ed. (INTECH, 2010), Chap. 11.

Reed, M. K.

Rosas, E.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Ryba-Romanowski, W.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Sato, Y.

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid processes,” IEEE J. Quantum Electron. 11, 613–620 (2005).
[CrossRef]

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference on Lasers and Electro-Optics/QELS Conference (OSA, 2007), 1–5, 1524–1525.

Sennaroglu, A.

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave Nd:YVO4 at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317(2000).
[CrossRef]

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), pp. 301–303.

Smith, G.

G. Smith and M. J. Damzen, “Spatially-selective amplified spontaneous emission derived from an ultrahigh gain solid-state amplifier,” Opt. Express 14, 3318–3323 (2006).
[CrossRef]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
[CrossRef]

Solarz, P.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Solarz, R. W.

Taira, T.

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[CrossRef]

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid processes,” IEEE J. Quantum Electron. 11, 613–620 (2005).
[CrossRef]

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference on Lasers and Electro-Optics/QELS Conference (OSA, 2007), 1–5, 1524–1525.

Tassano, J. H.

Thompson, B. A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).

A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
[CrossRef]

Tonelli, M.

Trew, M.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

Turri, G.

Wang, D.

X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
[CrossRef]

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

Wang, S. C.

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

Yan, X.

X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
[CrossRef]

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

Yarrow, M. J.

J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.

Yatagai, T.

M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
[CrossRef]

Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
[CrossRef]

IEEE J. Quantum Electron.

P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
[CrossRef]

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid processes,” IEEE J. Quantum Electron. 11, 613–620 (2005).
[CrossRef]

X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008).
[CrossRef]

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006).
[CrossRef]

Opt. Commun.

J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002).
[CrossRef]

A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).

Ş. A. Amarande and M. J. Damzen, “Measurement of thermal lens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier,” Opt. Commun. 265, 306–313 (2006).
[CrossRef]

M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007).
[CrossRef]

A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230, 191–195 (2004).
[CrossRef]

J. E. Bernard, E. McCullough, and A. J. Alcock, “High gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994).
[CrossRef]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009).
[CrossRef]

J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).

Opt. Express

Opt. Lett.

Opt. Mater. (Amsterdam)

V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. (Amsterdam) 24, 353–368 (2003).
[CrossRef]

Opt. Quantum Electron.

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave Nd:YVO4 at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317(2000).
[CrossRef]

Other

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2009).

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference on Lasers and Electro-Optics/QELS Conference (OSA, 2007), 1–5, 1524–1525.

COMSOL Multiphysics, a finite element analysis software by COMSOL, http://www.comsol.com .

In [15], similarly to [32], there was the same difference between λp and the nominal value of the pump wavelength (808.0 nm).

The bounce angle θ=7° in Ref. [15] and not 9°.

Using the data from Ref. [33], we estimate a fluorescence lifetime of 83 μs for 1.1 at. % Nd:YVO4.

J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.

W. Koechner, Solid State Lasers Engineering (Springer, 2006), pp. 474–477.

A. E. Siegman, Lasers (University Science Books, 1986), pp. 301–303.

A. Agnesi and F. Pirzio, “High gain solid-state amplifiers for picosecond pulses,” in Advances in Solid-State Lasers: Development and Applications, M. Grishin, ed. (INTECH, 2010), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sketch of the bounce laser amplifier: (a) top view (showing plane of bounce) and (b) view of the projection along the x axis.

Fig. 2.
Fig. 2.

Absorption spectrum measured for light polarized parallel to the crystal c axis (bold line) and emission spectrum of pump radiation emitted by the diode bar with nominal value (λp=808.0nm) of central wavelength (thin line).

Fig. 3.
Fig. 3.

Spatial distribution of the fractional thermal loading, ξ(x,y,z), in the presence of the Auger ETU at different pump powers: (a) ξ(x,0,0); (b) ξ(0,y,0), and (c) ξ(0,0,z). (d) Heating power, Q=Vq(x,y,z)dxdydz, as a function of the pump power, Pp0, with and without Auger ETU, represented by the bold and, respectively, by the regular continuous line. The contributions of the quantum defect, fluorescence quenching and Auger ETU are represented by the thin lines with squares, with circles and, respectively, with triangles.

Fig. 4.
Fig. 4.

Distribution of the normalized temperature in the pumped region of the bounce laser amplifier in the plane z=0, calculated with ξnoETU=0.28 and with ξ(x,y,z), represented with regular and, respectively, with bold continuous line: (a) along the x axis and (b) along the y axis.

Fig. 5.
Fig. 5.

Ratio of the dioptric power of the TL calculated with, Dp,ETU, and without Auger ETU, Dp,noETU, versus the inverse of the vertical size of the pump spot, wy, represented by filled squares for the bounce plane and with filled circles for the plane orthogonal to bounce.

Fig. 6.
Fig. 6.

Dioptric power of TL of the bounce laser against the pump power, with the measurement results represented by open squares for the bounce plane and by open circles for the plane orthogonal to bounce and the results of the calculation represented by the corresponding solid symbols.

Fig. 7.
Fig. 7.

Calculated dioptric power of TL against the pump power, for different values of the bounce angle θ: (a) for the bounce plane and (b) for the plane orthogonal to bounce.

Fig. 8.
Fig. 8.

Dioptric power of TL against the pump wavelength λp, for different values of the bounce angle, θ: (a) in the bounce plane and (b) in the plane orthogonal to bounce.

Tables (1)

Tables Icon

Table 1. Parameters Used for Calculations

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Pabs(x,y,z)=[ntn(x,y,z)]σa(λ)Ip,λ(x,y,z;λ)dλ,
dn(x,y,z)dt=rp(x,y,z)n(x,y,z)τγ[n(x,y,z)]2,
rp(x,y,z)=[ntn(x,y,z)]p(x,y,z)τ,
p(x,y,z)=Ip,λ(x,y,z;λ)[Ip,sat(λ)]1dλ.
n(x,y,z)nt=[1+p(x,y,z)]+[1+p(x,y,z)]2+4p(x,y,z)γntτ2γntτ.
Pp,λ(x+Δx;λ)=Pp(x)s(x;λ){[1σa(λ)[ntn(x,y,z)φ(y,z)dydz]Δx}.
Ip,λ(x+Δx,y,z;λ)=Pp(x+Δx)s(x+Δx;λ)φ(y,z).
n0(x,y,z)=nt/[1+1/p(x,y,z)].
Fem(x,y,z)=n(x,y,z)/τrrp(x,y,z).
Fem(x,y,z)=ττr11+τγn(x,y,z).
ξ(x,y,z)=ξ0Fem(x,y,z)+1Fem(x,y,z),
q(x,y,z)=ξ(x,y,z)Pabs(x,y,z).
[kcx2x2+kcy2y2+kcz2z2]T(x,y,z)=q(x,y,z),
OPDI(x,y)=dnrefrdTζ[T(x,y,z)T(0,0,z)]dz,
δl(y,z)αT0d/2[T(x,y,z)T(x,0,0)]dx,
OPDE(x,y)2nrefrsinθδl(x,y),
Pp,λ(x;λ)Pp,λ(x+Δx;λ)=Δx[ntn(x,y,z)]σa(λ)Ip,λ(x,y,z;λ)dydz.
Pp,λ(Δx;λ)=Pp,λ(0;λ)Δx[ntn(0,y,z)]σa(λ)Ip,λ(0,y,z;λ)dydz.
Pp,λ(Δx;λ)=Pp,λ(0;λ){1σa(λ)[ntn(0,y,z)φ(y,z)dydz]Δx}.

Metrics