Abstract

We show that chalcogenide glass As38Se62 capillaries can act as efficient waveguides in the whole mid-infrared–terahertz (THz) spectral range. The capillaries are fabricated using a double crucible drawing technique. This technique allows to produce glass capillaries with wall thicknesses in the range of 12 to 130 μm. Such capillaries show low-loss guidance in the whole mid-IR–THz spectral range. We demonstrate experimentally that low-loss guidance with thin capillaries involves various guidance mechanisms, including Fresnel reflections at the capillary inner walls, resonant guidance (ARROW type) due to light interference in the thin capillary walls, as well as total internal reflection guidance where very thin capillary walls act as a subwavelength waveguide, which is especially easy to observe in the THz spectral range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
    [CrossRef]
  2. J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent—wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991).
    [CrossRef]
  3. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
    [CrossRef]
  4. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [CrossRef]
  5. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006).
    [CrossRef]
  6. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
    [CrossRef]
  7. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef]
  8. M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
    [CrossRef]
  9. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).
  10. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
    [CrossRef]
  11. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
    [CrossRef]
  12. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef]
  13. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef]
  14. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
    [CrossRef]
  15. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
    [CrossRef]
  16. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
    [CrossRef]
  17. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
    [CrossRef]
  18. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10, 488–492 (2002).
  19. M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28, 536–541 (1980).
    [CrossRef]
  20. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954(2006).
    [CrossRef]
  21. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36, 1782–1784(2011).
    [CrossRef]
  22. D. Chen and H. Chen, “A novel low-loss terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010).
    [CrossRef]
  23. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared” J. Non-Cryst. Solids 351, 3341–3346 (2005).
    [CrossRef]
  24. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
    [CrossRef]
  25. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998).
    [CrossRef]
  26. V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
    [CrossRef]
  27. M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [CrossRef]
  28. M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
    [CrossRef]
  29. V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
    [CrossRef]
  30. G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
    [CrossRef]
  31. Amorphous Materials, “AMTIR-2: Arsenic Selenide Glass As–Se” (Amorphous Materials Inc., 2009). http://www.amorphousmaterials.com/
  32. M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011).
    [CrossRef]
  33. A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010).
    [CrossRef]

2012

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

2011

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
[CrossRef]

M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011).
[CrossRef]

E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36, 1782–1784(2011).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
[CrossRef]

2010

2009

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
[CrossRef]

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

2007

2006

2005

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

2004

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

2002

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10, 488–492 (2002).

1998

1995

M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

1991

1984

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

1980

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28, 536–541 (1980).
[CrossRef]

Adam, J.-L.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

Aggarwal, I. D.

Allen, P. J.

Anheier, N. C.

Astapovich, M. S.

Auguste, J.-L.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Biriukov, A. S.

Bisgaard, C. Z.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Blondy, J.-M.

Boussard, P.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

Boussard-Pledel, C.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

Bowden, B.

Bruno, B.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

Chang, H.

Charpentier, F.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

Chen, D.

Chen, H.

Chen, H.-W.

Chen, L.-J.

Churbanov, M. F.

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

Cole, B. J.

Desevedavy, F.

Dianov, E. M.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Dubois, C.

Dupuis, A.

Férachou, D.

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

George, R.

Granzow, N.

Harrington, J. A.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Heo, J.

Hô, N.

Hsueh, Y.-C.

Huang, Y.-J.

Humbert, G.

Ito, H.

Ito, T.

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Jepsen, P. U.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Kao, T.-F.

Kasahara, R.

Katagiri, T.

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Kosolapov, A. F.

Krishnaswami, K.

Krukova, E. B.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

Kurz, H.

Lai, C.-H.

Lavrinenko, A. V.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Lucas, J.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

Malureanu, R.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Marchewka, A.

Matsuura, Y.

Maurugeon, S.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

Mazhorova, A.

Miklos, R. E.

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

Minamide, H.

Mitrofanov, O.

Miyagi, M.

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Mossadegh, R.

Mueller, E.

Myers, T. L.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

Nagel, M.

Nguema, E.

Nguyen, V. Q.

Nishida, S.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28, 536–541 (1980).
[CrossRef]

Novitsky, A.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Ovchinnikov, D. K.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

Pedersen, P.

Peng, J.-L.

Phillips, M. C.

Plotnichenko, G. E.

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Plotnichenko, V. G.

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

Popescu, A.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Pryamikov, A. D.

Qiao, H.

Riley, B. J.

Rodrigues, M.

Roze, M.

Rozé, M.

Russell, P. St. J.

Saggese, S. J.

Sanghera, J. S.

Savastru, D.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Schaafsma, D.

Schmidt, M. A.

Shiryaev, V. S.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

Sigel, G. H.

Skorobogatiy, M.

Smetanin, S. V.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

Snopatin, G. E.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

Stark, S. P.

Stoeffler, K.

Sun, C.-K.

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Tverjanovich, A. S.

Ung, B.

Walther, M.

Wondraczek, L.

You, B.

Zalkovskij, M.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Zhang, X. H.

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

Zhang, X.-H.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012).
[CrossRef]

Fiber Integr. Opt.

B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28, 536–541 (1980).
[CrossRef]

Inorg. Mater.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009).
[CrossRef]

J. Korean Phys. Soc.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

J. Lightwave Technol.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998).
[CrossRef]

J. Non-Cryst. Solids

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[CrossRef]

V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[CrossRef]

M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Nature

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Opt. Express

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10, 488–492 (2002).

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011).
[CrossRef]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[CrossRef]

D. Chen and H. Chen, “A novel low-loss terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010).
[CrossRef]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[CrossRef]

A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954(2006).
[CrossRef]

Opt. Lett.

Other

Amorphous Materials, “AMTIR-2: Arsenic Selenide Glass As–Se” (Amorphous Materials Inc., 2009). http://www.amorphousmaterials.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Fabricated chalcogenide glass capillaries with different wall thickness in the range of (b) 12 μm to (a) 130 μm by double crucible glass drawing technique. To perform an imaging of thin wall capillaries, such as capillary with 12 μm walls shown at (b), they were glued in epoxy and then polished.

Fig. 2.
Fig. 2.

Setup for drawing capillaries using the double-crucible method.

Fig. 3.
Fig. 3.

Absorption loss of the As38Se62 rod with diameter 350 μm. Absorption bands in the 3–5 μm spectral range corresponds to impurity absorptions due to SeH bond at 3.53, 4.12, 4.57 μm. Also, strong absorption bands at 2.7–2.93 μm and 6.31 μm are due to OH—group and water.

Fig. 4.
Fig. 4.

(a) Profile of the capillary waveguide; (b) Fabry–Perot etalon.

Fig. 5.
Fig. 5.

(a) Absorption losses of capillary with 22 μm average wall thickness in spectral range from 2–14 μm, measured with the cut-back method. (b) Measured period of the resonances Δλ as a function of product of two consecutive resonance wavelengths λm+1*λm (μm2) from Fig. 5(a) of absorption losses; (c) Measured period of the resonances Δf as a function of frequency. Blue dashed line is the experimental fit of the resonances, which gives the wall thickness value of tfit=21.2±4.8μm, which is in a good agreement with measured optical microscope wall thickness t=22.1±5.5μm.

Fig. 6.
Fig. 6.

(a) Absorption losses of the capillary with average wall thickness 40 μm in the spectral range 2–14 μm. (b) Measured period of the resonances Δλ=λm+1λm (difference between the two adjacent absorption loss maxima λm+1, λm) as a function of product of two consecutive resonance wavelengths λm+1*λm (μm2) from Fig. 6(a) of absorption losses. (c) Measured period of the resonances Δf as a function of frequency. Blue line is the experimental fit of the resonances, which gives the wall thickness value of tfit=41.4±5.6μm, which is in a good agreement with measurements via the optical microscope t=40.1±6.2μm.

Fig. 7.
Fig. 7.

(a) Absorption losses of the capillary in the spectral range 2–14 μm, it tends to show a featureless spectrum with 5dB/m losses. (b) and (c) optical micrographs of the capillary with outer diameter of 0.98 mm and averaged wall thickness 117 μm.

Fig. 8.
Fig. 8.

(a) Transmittance by field of the effectively single mode 50 cm long capillary with 98 μm average wall thickness and 0.95 mm diameter in the spectral range between 0.1–2.5 THz. At lower frequencies (ω<0.3THz) guidance mechanism is of TIR type with losses 44dB/m, while at higher frequencies (ω>0.3THz) guidance is of ARROW type with total losses ranging in the 5893dB/m range, depending on the operation frequency. (b) and (c) Optical micrographs of the capillary used in the experiments with outer diameter of 0.95 mm and averaged wall thickness 98 μm. Orange dashed lines correspond to the positions of the water lines in the THz spectrum.

Fig. 9.
Fig. 9.

Longitudinal energy flux distributions for (a) ARROW type fundamental (HE11 mode) in thick wall capillary (98 μm thickness, 0.95 mm diameter) at 0.57 THz, (b) total internal reflection (TIR) type mode guided by the deeply subwavelength capillary walls at 0.18 THz of the same capillary.

Fig. 10.
Fig. 10.

(a) Transmittance of the capillary with average wall thickness 12 μm in the 0.1–2.0 THz spectral range with 19dB/m transmission loss at 0.75 THz. (b),(c) Photograph of the capillary used in the experiments with outer diameter of 1.56 mm and average wall thickness 12 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n(λ)=[1+λ2·(A02/(λ2A12)+A22/(λ2192)+A32/(λ24·A12))]1/2,
fm=mc2·n2·t·cosθ2=mc2·n2·t·1(n1n2)2=mc2tn22n12,
Δf=fm+1fm=c2tn22n12.
Δλ=λmλm+1=λm·λm+12tn22n12.
E⃗output(x,y,ω)=m=1NCm·E⃗m(x,y,ω)·exp(iωc·neff,m·Lw)×exp(αmLm2),

Metrics