Abstract

We introduce and theoretically investigate a scheme for teleportation of two-frequency entangled optical images in which the quantum channel is formed by four-frequency multimode states, generated in a single nonlinear photonic crystal by coupled parametric interactions. We study in detail the performance of the scheme. Namely, we evaluate its fidelity and the spatial-frequency spectra of the quadrature components characterizing the deterioration of the entanglement in the initial images due to the teleportation process. We analyze the influence of the spatial bandwidth of entanglement on the fidelity of teleportation. We investigate the performance of the scheme both in the near and the far diffraction field. Our analysis suggests that bandwidth matching of the quantum channel field with that of the images is generally necessary for high-quality teleportation. We show that entangled images are more fragile and more difficult to teleport than their coherent counterparts.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription