Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-level laser by the interaction of self-induced transparency pulses and surface Anderson localizations of light

Not Accessible

Your library or personal account may give you access

Abstract

Self-induced transparency (SIT) pulses induce a traveling population inversion in two-level atoms. As a rule, the active medium in which the soliton travels has to be homogeneous. Here, we study the effect of a spatially disordered modulation in the refractive index profile that may lead to Anderson localizations. The interplay between the ultrashort SIT pulse, a nonlinear effect, and this kind of disorder-induced mode exhibits intriguing features. Once the SIT pulse is confined in the spatially confined regions, they act as closed cavities for the SIT population inversion. A positive optical feedback mechanism can be thus activated and, as a result, a two-level laserlike emission can be obtained.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Self-induced transparency and the Anderson localization of light

Viola Folli and Claudio Conti
Opt. Lett. 36(15) 2830-2832 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved