Abstract

We investigate how to protect quantum correlations for two qubits each locally interacting with its own non-Markovian environment by making use of bang-bang pulses. It is shown that the quantum discord dynamics presents the phenomenon of sudden change for some certain initial states. We also find that the amount of quantum correlation between two qubits can be improved by applying a train of pulses and protected more effectively with shorter interval pulses or longer reservoir correlation time.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
    [CrossRef]
  3. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
    [CrossRef]
  4. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
    [CrossRef]
  5. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [CrossRef]
  6. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [CrossRef]
  7. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
    [CrossRef]
  8. X. Hao, C. L. Ma, and J. Q. Sha, “Decoherence of quantum discord in an asymmetric-anisotropy spin system,” J. Phys. A 43, 425302 (2010).
    [CrossRef]
  9. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
    [CrossRef]
  10. R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
    [CrossRef]
  11. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).
  12. H. S. Xu and J. B. Xu, “Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses,” EPL 95, 60003 (2011).
  13. S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
    [CrossRef]
  14. J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
    [CrossRef]
  15. S. Maniscalco and F. Petruccione, “Non-Markovian dynamics of a qubit,” Phys. Rev. A 73, 012111 (2006).
    [CrossRef]
  16. B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
    [CrossRef]
  17. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
    [CrossRef]
  18. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  19. F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010).
    [CrossRef]
  20. T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
    [CrossRef]
  21. Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
    [CrossRef]

2012 (2)

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

2011 (2)

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

H. S. Xu and J. B. Xu, “Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses,” EPL 95, 60003 (2011).

2010 (6)

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

X. Hao, C. L. Ma, and J. Q. Sha, “Decoherence of quantum discord in an asymmetric-anisotropy spin system,” J. Phys. A 43, 425302 (2010).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010).
[CrossRef]

2009 (2)

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

2008 (2)

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

2007 (1)

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

2006 (1)

S. Maniscalco and F. Petruccione, “Non-Markovian dynamics of a qubit,” Phys. Rev. A 73, 012111 (2006).
[CrossRef]

2001 (1)

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[CrossRef]

2000 (1)

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef]

1999 (1)

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Ager, J. W.

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

Alber, G.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Ali, M.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Auccaise, R.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Awschalom, D. D.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Bellomo, B.

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

Bernien, H.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Blok1, M. S.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Bonagamba, T. J.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Caves, C. M.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Céleri, L. C.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Chen, Z. Q.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Compagno, G.

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

Damodarakurup, S.

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

Datta, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

de Azevedo, E. R.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Di Giuseppe, G.

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

Dobrovitski, V. V.

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Feng, M.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Francica, F.

F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010).
[CrossRef]

Franco, R. L.

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

Guo, G. C.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Haller, E. E.

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

Hanson, R.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Hao, X.

X. Hao, C. L. Ma, and J. Q. Sha, “Decoherence of quantum discord in an asymmetric-anisotropy spin system,” J. Phys. A 43, 425302 (2010).
[CrossRef]

Jozsa, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Li, C. F.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Lidar, D. A.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Linden, N.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Lucamarini, M.

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

Lyon, S. A.

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

Ma, C. L.

X. Hao, C. L. Ma, and J. Q. Sha, “Decoherence of quantum discord in an asymmetric-anisotropy spin system,” J. Phys. A 43, 425302 (2010).
[CrossRef]

Maniscalco, S.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010).
[CrossRef]

S. Maniscalco and F. Petruccione, “Non-Markovian dynamics of a qubit,” Phys. Rev. A 73, 012111 (2006).
[CrossRef]

Maziero, J.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Mazzola, L.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

Meyer, D. A.

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Oliveira, I. S.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[CrossRef]

Petruccione, F.

S. Maniscalco and F. Petruccione, “Non-Markovian dynamics of a qubit,” Phys. Rev. A 73, 012111 (2006).
[CrossRef]

Piilo, J.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

Plastina, F.

F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010).
[CrossRef]

Popescu, S.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Rau, A. R. P.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Sarthour, R. S.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Schack, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Serra, R. M.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Sha, J. Q.

X. Hao, C. L. Ma, and J. Q. Sha, “Decoherence of quantum discord in an asymmetric-anisotropy spin system,” J. Phys. A 43, 425302 (2010).
[CrossRef]

Shaji, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

Soares-Pinto, D. O.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Souza, A. M.

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Taminiau, T. H.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Tombesi, P.

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

Toyli, D. M.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Tyryshkin, A. M.

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

van der Sar, T.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Vedral, V.

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Vitali, D.

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

Wang, B.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Wang, Z. H.

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Xu, H. S.

H. S. Xu and J. B. Xu, “Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses,” EPL 95, 60003 (2011).

Xu, J. B.

H. S. Xu and J. B. Xu, “Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses,” EPL 95, 60003 (2011).

Xu, J. S.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Xu, X. Y.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Xu, Z. Y.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Zhang, C. J.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Zhang, W. X.

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

Zou, X. B.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[CrossRef]

EPL (1)

H. S. Xu and J. B. Xu, “Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses,” EPL 95, 60003 (2011).

J. Phys. A (1)

X. Hao, C. L. Ma, and J. Q. Sha, “Decoherence of quantum discord in an asymmetric-anisotropy spin system,” J. Phys. A 43, 425302 (2010).
[CrossRef]

Nat. Commun. (1)

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010).

Nature (1)

T. van der Sar, Z. H. Wang, M. S. Blok1, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012).
[CrossRef]

Phys. Rev. A (5)

F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010).
[CrossRef]

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

S. Maniscalco and F. Petruccione, “Non-Markovian dynamics of a qubit,” Phys. Rev. A 73, 012111 (2006).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Phys. Rev. B (1)

Z. H. Wang, W. X. Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).
[CrossRef]

Phys. Rev. Lett. (10)

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. de Azevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via bang-bang control,” Phys. Rev. Lett. 103, 040502 (2009).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Q1(t) (solid line) and Q2(t) (dash line) are plotted as a function of time t with γ0=1, λ=0.1 for different initial states (a) c1=0.9, c2=0.9, c3=1 and (b) c1=0.9, c2=0.9, c3=0.8 without control pulses. The analytical solution of the quantum discord is the minimum value assumed by the functions Q1(t) and Q2(t).

Fig. 2.
Fig. 2.

Quantum mutual information I(t) (a), classical correlation C(t) (b), and Quantum discord Q(t) (c) are plotted as a function of time t with γ0=1, λ=0.1, c1=0.9, c2=0.9, c3=1 for different T: T=0.4 (dash line), T=0.2 (dot line), T=0.1 (dot-dash line), and without control pulses (solid line).

Fig. 3.
Fig. 3.

The concurrence CE(t) (a) and the quantum discord Q(t) (b) of two atoms are plotted as a function of t and r for the parameters γ0=1, λ=0.1 without control pulses.

Fig. 4.
Fig. 4.

Quantum discord Q(t) (a) and classical correlation C(t) (b) are plotted as a function of time t with γ0=1, λ=0.1, r=1 for different T: T=0.6 (dash line), T=0.2 (dot line), T=0.01 (dot-dash line), and without control pulses (solid line).

Fig. 5.
Fig. 5.

Quantum discord Q(t) (a) and concurrence CE(t) (b) are plotted as a function of time t with γ0=1, λ=0.1, r=0.5 for different T: T=0.6 (dash line), T=0.2 (dot line), T=0.01 (dot-dash line), and without control pulses (solid line).

Fig. 6.
Fig. 6.

The quantum discord Q(t) (a) and classical correlation C(t) (b) are plotted as a function of time t and T with γ0=1, λ=0.1, r=1. The functions are shown in the presence of pulses (NeonColors surface) and in the absence of pulses (T-independent, LakeColors surface).

Fig. 7.
Fig. 7.

The difference of quantum discord ΔQ between Q(0) and Q(t) is plotted as a function of time t and (a) λ1(τB) with γ0=1, T=0.01, r=1 or (b) γ01(τR) with λ=0.1, T=0.01, r=1.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

H=H0+HI+HP(t)
H0=ω02σz+kωkakak;HI=kgk(σ+ak+σak),
HP(t)=Vσzn=0θ(tTn(T+τ))θ((n+1)(T+τ)t),
dρ(t)dt=0tdtTrR[HI(t),[HI(t),ρ(t)ρR]],
HI(t)=U(t)HIU(t),
U(t)=[UPU0(T)]nU0(tnT),
HI(t)=kgk(1)[tT](eiω0tσ+ak+eiω0tσak),
J(ω)=12πγ0λ2(ω0ω)2+λ2,
dρ(t)dt=0tdtK(t,t)Lρ(t),
Lρ(t)=σρσ+12σ+σρ12ρσ+σ,
K(t,t)=(1)[tT]+[tT]k(tt),
ρS(t)=(ρ11S(0)Ptρ10S(0)Ptρ01S(0)Pt1ρ11S(0)Pt),
dPtdt=0tdtK(t,t)Pt.
Pt=eλt[Ancosd(tnT)2+Bnsind(tnT)2]2,
An=eλ2T[An1cosdT2+Bn1sindT)2],Bn=eλ2T[An1cosdT2+Bn1sindT)2],2λdeλ2T[An1sindT2+Bn1cosdT)2].
ρ11AB(t)=ρ11AB(0)Pt2,ρ22AB(t)=ρ22AB(0)Pt+ρ11AB(0)Pt(1Pt),ρ33AB(t)=ρ33AB(0)Pt+ρ11AB(0)Pt(1Pt),ρ44AB(t)=1[ρ11AB(t)+ρ22AB(t)+ρ33AB(t)],
ρ12AB(t)=ρ12AB(0)Pt32,ρ13AB(t)=ρ13AB(0)Pt32,ρ14AB(t)=ρ14AB(0)Pt,ρ23AB(t)=ρ23AB(0)Ptρ24AB(t)=Pt[ρ24AB(0)Pt+ρ13AB(0)(1Pt)],ρ34AB(t)=Pt[ρ34AB(0)Pt+ρ12AB(0)(1Pt)],
I(ρAB)=S(ρA)+S(ρB)S(ρAB),
Q(ρAB)=I(ρAB)C(ρAB),
C(ρAB)=max{Bk}[S(ρA)S(ρAB|{Bk})],
ρAB(0)=14(1+c300c1c201c3c1+c200c1+c21c30c1c2001+c3),
ρAB(t)=(a00ω0bz00zb0ω00d),
a=14(1+c3)Pt2,b=12Pt14(1+c3)Pt2,d=1Pt+14(1+c3)Pt2,z=14(c1+c2)Pt,w=14(c1c2)Pt.
Q(ρAB)=min{Q1,Q2},
Q1=S(ρA)S(ρAB)alog2(aa+b)blog2(ba+b)dlog2(dd+b)blog2(bd+b)
Q2=S(ρA)S(ρAB)Δ+log2Δ+Δlog2Δ,
Q1(0)Q2(0)=k=121+(1)k|c3|2log2[1+(1)k|c3|]k=121+(1)kχ2log2[1+(1)kχ],
CE(t)=max{0,2|w|2|b|,2|z|2ad}.
ρW=r|ψψ|+1r4I,

Metrics