Abstract

We investigate the roles of different environmental models on quantum correlation decay behavior of a two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and bandgap model) are analyzed. First, we note that, for the weak coupling regime, the monotonic decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation primarily depends on the non-Markovianity of the environmental models.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
    [CrossRef]
  2. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
    [CrossRef]
  3. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
    [CrossRef]
  4. A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [CrossRef]
  5. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [CrossRef]
  6. A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .
  7. J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
    [CrossRef]
  8. J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
    [CrossRef]
  9. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
    [CrossRef]
  10. Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
    [CrossRef]
  11. Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
    [CrossRef]
  12. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
    [CrossRef]
  13. T. Yu and J. H. Eberly, “Entanglement sudden death,” Science 323, 598–601 (2009).
    [CrossRef]
  14. B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
    [CrossRef]
  15. S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
    [CrossRef]
  16. B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
    [CrossRef]
  17. Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
    [CrossRef]
  18. C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
    [CrossRef]
  19. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
    [CrossRef]
  20. L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian dephasing channels” (2010), http://arxiv.org/abs/1006.1805v1 .
  21. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
    [CrossRef]
  22. B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636–4639 (1997).
    [CrossRef]
  23. B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys. Rev. A 55, 2290–2303 (1997).
    [CrossRef]
  24. L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
    [CrossRef]
  25. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
    [CrossRef]
  26. H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009).
    [CrossRef]
  27. Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
    [CrossRef]
  28. A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
    [CrossRef]
  29. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

2011 (2)

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
[CrossRef]

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
[CrossRef]

2010 (6)

A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
[CrossRef]

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
[CrossRef]

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

2009 (5)

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Entanglement sudden death,” Science 323, 598–601 (2009).
[CrossRef]

H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

2008 (7)

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
[CrossRef]

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[CrossRef]

A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

2007 (1)

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

2004 (1)

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

2003 (1)

V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
[CrossRef]

2002 (1)

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

1997 (2)

B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636–4639 (1997).
[CrossRef]

B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys. Rev. A 55, 2290–2303 (1997).
[CrossRef]

Acin, A.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .

Alber, G.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Ali, M.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Aolita, L.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Bellomo, B.

B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
[CrossRef]

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

Breuer, H. P.

H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009).
[CrossRef]

Cavalcanti, D.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .

Caves, C.

A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

Celeri, L. C.

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Compagno, G.

B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
[CrossRef]

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

Cucchietti, F. M.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .

Datta, A.

A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

Eberly, J. H.

T. Yu and J. H. Eberly, “Entanglement sudden death,” Science 323, 598–601 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

Fanchini, F. F.

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Ferraro, A.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .

Ficek, Z.

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Francia, F.

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

Franco, R. L.

B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
[CrossRef]

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

Garraway, B. M.

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636–4639 (1997).
[CrossRef]

B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys. Rev. A 55, 2290–2303 (1997).
[CrossRef]

Gullo, N. L.

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

Guo, G. C.

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
[CrossRef]

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
[CrossRef]

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

He, Z.

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
[CrossRef]

Huelga, S. F.

A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
[CrossRef]

Laine, E. M.

H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009).
[CrossRef]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Lastra, F.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Li, C. F.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Li, L.

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
[CrossRef]

López, C. E.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Luo, S.

S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[CrossRef]

Maniscalco, S.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
[CrossRef]

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian dephasing channels” (2010), http://arxiv.org/abs/1006.1805v1 .

Maziero, J.

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Mazzola, L.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian dephasing channels” (2010), http://arxiv.org/abs/1006.1805v1 .

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

Piilo, J.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian dephasing channels” (2010), http://arxiv.org/abs/1006.1805v1 .

Plastina, F.

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

Plenio, M. B.

A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
[CrossRef]

Rau, A. R. P.

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Retamal, J. C.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Rivas, A.

A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
[CrossRef]

Romero, G.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Serra, R. M.

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

Shaji, A.

A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

Shao, B.

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
[CrossRef]

Solano, E.

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

Souza, S.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Suominen, K. A.

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

Tanas, R.

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Vedral, V.

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
[CrossRef]

Villas Boas, C. J.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Werlang, T.

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Xia, Y. J.

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
[CrossRef]

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
[CrossRef]

Xu, J. S.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Xu, X. Y.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Yu, T.

T. Yu and J. H. Eberly, “Entanglement sudden death,” Science 323, 598–601 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

Zaffino, R. L.

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

Zhang, C. J.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Zhang, Y. J.

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
[CrossRef]

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
[CrossRef]

Zou, J.

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
[CrossRef]

Zou, X. B.

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
[CrossRef]

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
[CrossRef]

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

J. Phys. B (1)

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011).
[CrossRef]

Nat. Commun. (1)

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Phys. Rev. A (12)

B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636–4639 (1997).
[CrossRef]

B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys. Rev. A 55, 2290–2303 (1997).
[CrossRef]

L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009).
[CrossRef]

M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010).
[CrossRef]

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011).
[CrossRef]

Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010).
[CrossRef]

S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[CrossRef]

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009).
[CrossRef]

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008).
[CrossRef]

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Phys. Rev. Lett. (11)

C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007).
[CrossRef]

S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).
[CrossRef]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
[CrossRef]

V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003).
[CrossRef]

H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009).
[CrossRef]

Science (1)

T. Yu and J. H. Eberly, “Entanglement sudden death,” Science 323, 598–601 (2009).
[CrossRef]

Other (3)

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .

L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian dephasing channels” (2010), http://arxiv.org/abs/1006.1805v1 .

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Time evolution of the atomic QD as a function of the dimensionless quantity Ωt under the atom-pseudomode resonant condition (Δ=ωcω0=0), with θ=π/3. (a), (b) Single-Lorentzian and squared-Lorentzian models; (c), (d) two-Lorentzian and bandgap models.

Fig. 2.
Fig. 2.

Time evolution of the atomic QD as a function of the dimensionless quantity Ωt under the atom-pseudomode near-resonance regime and far off-resonance regime, with θ=π/3. (a), (b) Single-Lorentzian and squared-Lorentzian models, with Γ=11Ω; (c), (d) two-Lorentzian and bandgap models, with Γ1=11Ω, Γ2=Ω.

Fig. 3.
Fig. 3.

Density of the spectrum D(ω) as a function of the dimensionless quantity (ωωc) in the weak coupling regime. (a) Single-Lorentzian and squared-Lorentzian models, with Γ=11Ω; (b) two-Lorentzian and bandgap models, with Γ1=11Ω, Γ2=Ω.

Fig. 4.
Fig. 4.

Time evolution of the atomic QD as a function of the dimensionless quantity Ωt under the atom-pseudomode near-resonance regime and far off-resonance regime, with θ=π/3. (a), (b) Single-Lorentzian and squared-Lorentzian models, with Γ=0.11Ω; (c), (d) two-Lorentzian and bandgap models, with Γ1=0.11Ω, Γ2=0.01Ω.

Fig. 5.
Fig. 5.

Time evolution of the trace distance DS(ρ1,ρ2) as a function of the dimensionless quantity Ωt under the far off-resonance regime, with ρ1(0)=|ee| and ρ2(0)=|gg|. (a) Single-Lorentzian and squared-Lorentzian models, with Γ=0.11Ω; (b) two-Lorentzian and bandgap models, with Γ1=0.11Ω, Γ2=0.01Ω.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H^0j=ω0σ^+jσ^j+k=1Nωkakak,
H^intj=k=1Ngk(σ^+jak+σ^jak),
dρdt=i[Hj,ρ]Γ2(aaρ2aρa+ρaa),
Hj=ω0σ+jσj+ωcaa+Ω(σ+ja+σja),
dρdt=i[Hj,ρ]Γ12(a1a1ρ2a1ρa1+ρa1a1)Γ22(a2a2ρ2a2ρa2+ρa2a2),
Hj=ω0σ+jσj+ωca1a1+ωca2a2+ΩW1(σ+ja1+σja1)+ΩW2(σ+ja2+σja2).
dρdt=i[Hj,ρ]Γ12(a1a1ρ2a1ρa1+ρa1a1)Γ22(a2a2ρ2a2ρa2+ρa2a2),
Hj=ω0σ+jσj+ωca1a1+ωca2a2+Ω(a2σj+a2σ+j)+V(a1a2+a1a2).
dρdt=i[Hj,ρ]Γ(a1a1ρ2a1ρa1+ρa1a1),
Hj=ω0σ+jσj+ωca1a1+ωca2a2+Ω(a2σj+a2σ+j)+V(a1a2+a1a2).
N(Φ)=maxρ1,2(0)σ>0dtσ(t,ρ1,2(0)),
N(Φ)=maxρ1,2(0)i[D(ρ1(bi),ρ2(bi))D(ρ1(ai),ρ2(ai))].

Metrics