Abstract

In this paper, we demonstrate that it is possible to combine both Raman amplification and polarization attraction of a signal wave in a single optical fiber by means of a counterpropagating scheme. Experiments were performed near 1550 nm in a continuous wave regime and by means of a 10Gbit/s return-to-zero signal injected in a 20 km-long low polarization mode dispersion optical fiber. Complete repolarization and 6.7 dB amplification of the signal wave was achieved by injecting a 850 mW, 1480 nm counterpropagating polarized pump wave.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24, 4172–4183 (2006).
    [CrossRef]
  2. B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
    [CrossRef]
  3. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
    [CrossRef]
  4. M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.
  5. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett. 35, 3970–3972 (2010).
    [CrossRef]
  6. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol. 29, 341–347 (2011).
    [CrossRef]
  7. F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
    [CrossRef]
  8. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” Photon. Technol. Lett. 23, 254–256 (2011).
    [CrossRef]
  9. N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19, 18707–18712 (2011).
    [CrossRef]
  10. S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express 19, 24268–24279 (2011).
    [CrossRef]
  11. L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OML7.
  12. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
    [CrossRef]
  13. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17, 12612–12618 (2009).
    [CrossRef]
  14. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19, 25873–25880 (2011).
    [CrossRef]
  15. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
    [CrossRef]
  16. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
    [CrossRef]
  17. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
    [CrossRef]
  18. J. F. L. Freitas, C. J. S. de Matos, M. B. Costa e Silva, and A. S. L. Gomes, “Impact of phase modulation and parametric gain on signal polarization in an anomalously dispersive optical fiber,” J. Opt. Soc. Am. B 24, 1469–1474 (2007).
    [CrossRef]
  19. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
    [CrossRef]
  20. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
    [CrossRef]
  21. J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10  Gb/s RZ and NRZ telecommunication signals,” J. Sel. Top. Quantum Electron. 18, 621–628 (2012).
    [CrossRef]
  22. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011).
    [CrossRef]
  23. V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28, 100–108 (2011).
    [CrossRef]
  24. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high birefringence and spun fibers,” Opt. Lett. 35, 3949–3951 (2010).
    [CrossRef]
  25. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010).
    [CrossRef]
  26. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4040 (2011).
    [CrossRef]
  27. E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Hamiltonian tools for the analysis of optical polarization control,” J. Opt. Soc. Am. B 29, 559–571 (2012).
    [CrossRef]
  28. V. V. Kozlov, K. Turitsyn, and S. Wabnitz, “Nonlinear repolarization in optical fibers: polarization attraction with copropagating beams,” Opt. Lett. 36, 4050–4052 (2011).
    [CrossRef]
  29. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443 (2001).
    [CrossRef]
  30. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005).
    [CrossRef]
  31. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29, 599–601 (2004).
    [CrossRef]
  32. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9, 1061–1082 (1992).
    [CrossRef]

2012 (2)

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10  Gb/s RZ and NRZ telecommunication signals,” J. Sel. Top. Quantum Electron. 18, 621–628 (2012).
[CrossRef]

E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Hamiltonian tools for the analysis of optical polarization control,” J. Opt. Soc. Am. B 29, 559–571 (2012).
[CrossRef]

2011 (11)

V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28, 100–108 (2011).
[CrossRef]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol. 29, 341–347 (2011).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
[CrossRef]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011).
[CrossRef]

N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19, 18707–18712 (2011).
[CrossRef]

E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4040 (2011).
[CrossRef]

V. V. Kozlov, K. Turitsyn, and S. Wabnitz, “Nonlinear repolarization in optical fibers: polarization attraction with copropagating beams,” Opt. Lett. 36, 4050–4052 (2011).
[CrossRef]

S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express 19, 24268–24279 (2011).
[CrossRef]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19, 25873–25880 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

2010 (6)

2009 (2)

2008 (3)

2007 (1)

2006 (1)

2005 (1)

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005).
[CrossRef]

2004 (1)

2001 (1)

1992 (1)

Ania-Castañón, J. D.

Assémat, E.

Bayer, S.

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

Chiarello, F.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
[CrossRef]

Chin, S.

Cirigliano, M.

Claveau, R.

Costa e Silva, M. B.

Dargent, D.

de Matos, C. J. S.

Eyal, A.

Fatome, J.

Ferrario, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.

Ferreira, M. F. S.

Finot, C.

Freitas, J. F. L.

Galtarossa, A.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Gilardone, V.

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.

Gomes, A. S. L.

Griesser, H.

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

Haelterman, M.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005).
[CrossRef]

Jauslin, H. R.

Koch, B.

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

Kozlov, V. V.

Lagrange, S.

Loayssa, A.

Marazzi, L.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.

Martelli, P.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef]

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24, 4172–4183 (2006).
[CrossRef]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.

Martinelli, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef]

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24, 4172–4183 (2006).
[CrossRef]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.

Millot, G.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10  Gb/s RZ and NRZ telecommunication signals,” J. Sel. Top. Quantum Electron. 18, 621–628 (2012).
[CrossRef]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011).
[CrossRef]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17, 12612–12618 (2009).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
[CrossRef]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005).
[CrossRef]

S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29, 599–601 (2004).
[CrossRef]

S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443 (2001).
[CrossRef]

Mirvoda, V.

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

Morin, P.

Muga, N. J.

Noé, R.

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

Nuno, J.

Nuño, J.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Picozzi, A.

Pietralunga, S. M.

Pinto, A. N.

Pitois, S.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10  Gb/s RZ and NRZ telecommunication signals,” J. Sel. Top. Quantum Electron. 18, 621–628 (2012).
[CrossRef]

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011).
[CrossRef]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17, 12612–12618 (2009).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
[CrossRef]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005).
[CrossRef]

S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29, 599–601 (2004).
[CrossRef]

S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443 (2001).
[CrossRef]

Primerov, N.

Sagues, M.

Santagiustina, M.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Sauter, A.

Schenato, L.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Sergeyev, S. V.

Shmilovitch, Z.

Sugny, D.

Thevenaz, L.

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19, 25873–25880 (2011).
[CrossRef]

L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OML7.

Thévenaz, L.

Trillo, S.

Tur, M.

Turitsyn, K.

Ursini, L.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Wabnitz, S.

Wernz, H.

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

Zadok, A.

Zilka, E.

Appl. Opt. (1)

Europhys. Lett. (1)

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (5)

J. Sel. Top. Quantum Electron. (1)

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10  Gb/s RZ and NRZ telecommunication signals,” J. Sel. Top. Quantum Electron. 18, 621–628 (2012).
[CrossRef]

Opt. Express (10)

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011).
[CrossRef]

N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19, 18707–18712 (2011).
[CrossRef]

S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express 19, 24268–24279 (2011).
[CrossRef]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19, 25873–25880 (2011).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef]

J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17, 12612–12618 (2009).
[CrossRef]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
[CrossRef]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef]

Opt. Lett. (6)

Photon. Technol. Lett. (4)

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59  krad/s polarization tracking in 112  Gb/s 640 km PDM-RZ-DQPSK transmission,” Photon. Technol. Lett. 22, 1407–1409 (2010).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” Photon. Technol. Lett. 23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

Other (2)

L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OML7.

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in European Conference and Exhibition on Optical Communication (ECOC’2010) (IEEE, 2010), paper P1.19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Principle of the device allowing both polarization attraction and Raman amplification.

Fig. 2.
Fig. 2.

Experimental setup: (a) 10Gb/s RZ transmitter; (b) all-optical polarization attraction block. MLFL, mode-locked fiber laser; MZM, Mach–Zehnder modulator.

Fig. 3.
Fig. 3.

Evolution of the SOP of the output cw signal as a function of the Raman pump power. (a) 0 mW; (b) 340 mW; (c) 680 mW, and (d) 850 mW. The signal power was fixed to 250 mW.

Fig. 4.
Fig. 4.

Intensity profile (detected behind a polarizer) of the output CW signal, without (a) and with (b) the 850 mW counterpropagating Raman pump wave. The signal power at the input of the fiber was fixed to 250 mW.

Fig. 5.
Fig. 5.

Evolution of the SOP of the 10Gbit/s signal wave at the output of the fiber as a function of Raman pump power. (a) 0 mW; (b) 200 mW; (c) 400 mW, and (d) 850 mW. The signal power was fixed to 24 dBm. A 6.7 dB on/off gain was achieved for a pump power of 850 mW.

Fig. 6.
Fig. 6.

Evolution of the DOP of the 10Gbit/s signal wave at the output of the fiber as a function of Raman pump power. The signal power was fixed to 250 mW, whereas the Raman pump power varies from 0 to 850 mW.

Fig. 7.
Fig. 7.

Eye-diagram (detected behind a polarizer) of the output 10Gbit/s, without (a) and with (b) the counterpropagating Raman pump wave. Signal and pump average power were fixed to 24 dBm (250 mW) and 850 mW, respectively.

Fig. 8.
Fig. 8.

Evolution of the BER as a function of average power in back-to-back configuration (circles); at the output of the system, with polarization scrambling and after a polarizer with (squares) and without (triangles) the 850 mW counterpropagating pump beam.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ut+v1uz=i23γv1[(|u|2+2|v|2)u+(2|u¯|2+2|v¯|2)u+2u¯v¯*v],
vt+v1vz=i23γv1[(|v|2+2|u|2)v+(2|u¯|2+2|v¯|2)v+2u¯*v¯u],
u¯tv2u¯z=i23γv2[(|u¯|2+2|v¯|2)u¯+(2|u|2+2|v|2)u¯+2uv*v¯],
v¯tv2v¯z=i23γv2[(|v¯|2+2|u¯|2)v¯+(2|u|2+2|v|2)v¯+2u*vu¯],
ut+v1uz=iγv1[(23α+ρga(0))|u|2+(43α+ρga(0)+ρgb(0))|v|2+(43α+ρga(0)+ρga(Ω))|u¯|2+(43α+ρga(0)+ρgb(Ω))|v¯|2]u+iγv1[(43α+ρga(Ω)+ρgb(0))]u¯vv¯*,
vt+v1vz=iγv1[(23α+ρga(0))|v|2+(43α+ρga(0)+ρgb(0))|u|2+(43α+ρga(0)+ρga(Ω))|v¯|2+(43α+ρga(0)+ρgb(Ω))|u¯|2]v+iγv1[(43α+ρga(Ω)+ρgb(0))]v¯uu¯*,
ga(Ω)=0(a(t)exp(iΩt)+b(t)2exp(iΩt))dt,
gb(Ω)=0b(t)exp(iΩt)dt,
a(t)+b(t)=τ12+τ22τ1τ22exp(t/τ2)sin(t/τ1),
b(t)=2rτ2exp(t/τ2).
DOP=S12+S22+S32S0,

Metrics