Abstract

We study Raman scattering in active media placed in proximity to different types of metal nanostructures, at wavelengths that display either Fabry–Perot or plasmonic resonances, or a combination of both. We use a semiclassical approach to derive equations of motion for Stokes and anti-Stokes fields that arise from quantum fluctuations. Our calculations suggest that local field enhancement yields Stokes and anti-Stokes conversion efficiencies between 5 and 7 orders of magnitudes larger compared to cases without the metal nanostructure. We also show that to first order in the linear susceptibility the local field correction induces a dynamic, intensity-dependent frequency detuning that at high intensities tends to quench Raman gain.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (2)

» Media 1: MOV (1654 KB)     
» Media 2: MOV (1251 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription