Abstract

To achieve a dispersion-compensation photonic crystal fiber with an ultralarge negative chromatic dispersion coefficient, this paper theoretically investigates a liquid-filled hybrid structure of dual-concentric core photonic crystal fiber (DCC-PCF) and depressed-clad photonic crystal fiber (DeC-PCF). The proposed hybrid structure reveals an important property: The design can avoid the restriction of “mutual involvement” between two supermodes, thereby significantly increasing the index slope difference between two supermodes. Ultimately, the negative chromatic dispersion coefficient is greatly enlarged. The numeric results indicate that the negative chromatic dispersion coefficient for the proposed hybrid dispersion-compensating PCFs is up to 40400ps/(kmnm) at a wavelength of around 1.55 μm, which is approximately 1.81 times larger than that of the previous structure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18, 924–926 (1993).
    [CrossRef]
  2. J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
    [CrossRef]
  3. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  4. F. Gerome, J.-L. Auguste, and J.-M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29, 2725–2727 (2004).
    [CrossRef]
  5. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14, 893–900 (2006).
    [CrossRef]
  6. H. Subbaraman, T. Ling, Y-.Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46, 3263–3268 (2007).
    [CrossRef]
  7. X. Zhao, G. Zhou, . Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47, 5190–5196 (2008).
    [CrossRef]
  8. C. P. Yu, J. H. Liou, S. S. Huang, and H. C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16, 4443–4451 (2008).
    [CrossRef]
  9. Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
    [CrossRef]
  10. Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
    [CrossRef]
  11. S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005).
    [CrossRef]
  12. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  13. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  14. J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).
  15. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13, 9014–9022 (2005).
    [CrossRef]
  16. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
    [CrossRef]
  17. K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
    [CrossRef]
  18. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
    [CrossRef]
  19. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246–255(2002).
  20. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005),
    [CrossRef]

2008 (2)

2007 (1)

2006 (1)

2005 (6)

L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13, 9014–9022 (2005).
[CrossRef]

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005),
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005).
[CrossRef]

2004 (2)

F. Gerome, J.-L. Auguste, and J.-M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29, 2725–2727 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

2002 (3)

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
[CrossRef]

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246–255(2002).

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

1993 (1)

1965 (1)

Ando, T.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
[CrossRef]

Auguste, J. L.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Auguste, J.-L.

Birks, T.

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Blondy, J. M.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Blondy, J.-M.

Brost, G.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Cao, P.

Chang, H. C.

Chen, M. Y.

H. Subbaraman, T. Ling, Y-.Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46, 3263–3268 (2007).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Chen, R. T.

H. Subbaraman, T. Ling, Y-.Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46, 3263–3268 (2007).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Chen, X.

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Demokan, M. S.

Dussardier, B.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Eggleton, B. J.

Fujisawa, T.

Gerome, F.

Hane, K.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
[CrossRef]

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Ho, H. L.

Hoo, Y. L.

Hou, L.

Hou, Z.

Howley, B.

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Huang, S. S.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Jiang, Y.

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Jiang, Y-.Q.

Jin, W.

Jindal, R.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Joannapolous, J. D.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Johnson, S. G.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Kerbage, C.

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Koshiba, M.

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14, 893–900 (2006).
[CrossRef]

S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005).
[CrossRef]

Lee, C.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Leon-Saval, S.

Li, .

Ling, T.

Liou, J. H.

Liu, Z.

Malitson, I. H.

Maury, J.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Meade, R. D.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Monnom, G.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Nogawa, S.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
[CrossRef]

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Pal, B. P.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Reed, W. A.

Saitoh, K.

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14, 893–900 (2006).
[CrossRef]

S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005).
[CrossRef]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).

Sasaki, M.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
[CrossRef]

Shi, Z.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Srensen, T.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

St. J. Russell, P.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Subbaraman, H.

Thyagarajan, K.

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Varshney, S. K.

S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005).
[CrossRef]

Vengsarkar, A. M.

Wada, K.

Wadsworth, W.

Wei, D.

Winn, J. N.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Witkowska, A.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Yu, C. P.

Zhao, C.

Zhao, X.

Zhou, G.

Zhou, Q.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005).
[CrossRef]

S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002).
[CrossRef]

Opt. Eng. (1)

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Opt. Lett. (2)

Other (2)

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross-sectional view and effective index profile of the dispersion compensation photonic crystal fibers for (a) type I (proposed hybrid structure); (b) type II (previous DCC-PCF structure); and (c) DeC-PCF structure. Λ=2.30μm, d=1.40μm, d1=1.90μm, nL1=1.2000, nL2=1.3069, nLC=1.4001, nair=1.0000.

Fig. 2.
Fig. 2.

Dependence of the effective indices on wavelengths for photonic crystal fibers with higher and lower (a) cladding space-filling fraction and (b) filled-liquid index.

Fig. 3.
Fig. 3.

Dependence of the chromatic dispersion coefficient D on wavelengths for DCC-PCFs with larger holes at (a) first layer (dr=0.8416μm); (b) first and second layers (dr=0.8416μm); and (c) first to third layers (dr=0.7127μm), respectively. Λ=2.30μm, d=1.40μm, d1=1.90μm.

Fig. 4.
Fig. 4.

Relation of the effective indices versus wavelengths of (a) DeC-PCF and (b) regular PCF. The relationship between the effective indices of inner and outer mode for (c) type I (proposed hybrid structure) and (d) type II (previous DCC-PCF structure). Λ=2.30μm, d1=1.90μm.

Fig. 5.
Fig. 5.

Relation of the effective indices versus wavelengths for the proposed hybrid DCPCF. Λ=2.30μm, d=1.40μm, d1=1.90μm, nL1=1.2000, nL2=1.3069.

Fig. 6.
Fig. 6.

Field patterns of the fundamental mode on the proposed hybrid DCPCF at a wavelength of (a) 1.50 μm; (b) 1.55 μm; and (c) 1.90 μm, respectively.

Fig. 7.
Fig. 7.

Chromatic dispersion values D of the proposed hybrid DCPCF with variant air-hole sizes of (a) first layer and (b) cladding as well as variant index of the liquids filled in (c) cladding holes and (d) outer ring core holes.

Fig. 8.
Fig. 8.

Dependence of the estimated chromatic dispersion coefficient D on wavelengths for proposed DCPCF type I (Λ=2.30μm, d1=1.90μm, d=1.40μm, nL1=1.2000, nL2=1.3069) and previous type II (Λ=2.30μm, d=1.40μm, nLC=1.4001).

Tables (1)

Tables Icon

Table 1. Relationship Between Wavelength-Shift Amounts Δλ and the Increments of the Factors Δd1, Δd, Δn1, and Δn2, Respectivelya

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D=λcd2neffdλ2,
n(λ)=[1+0.6961663λ2λ2(0.0684043)2+0.4079426λ2λ2(0.1162414)2+0.8974794λ2λ2(9.896161)2]1/2.
×[1ε(r)×H(r)]=(ωC)2H(r),
H(r)=eik·rh(r)e^k,
h(r)=h(r+R),
1ε(r)=Gε1(G)eiG·r,
h(r)=Gh(G)eiG·r.
H(r)=e^keik·rGh(G)eiG·r=Gjh(G,j)ei(k+G)·rej^.
G|k+G||k+G|ε1(GG)[e^2,G·e^2,Ge^2,G·e^1,Ge^1,G·e^2,Ge^1,G·e^1,G][h1,Gh2,G]=ω2c2[h1,Gh2,G].
neff=|k|ω(k).

Metrics