Abstract

Photoacoustic generation is an attractive alternative to generate ultrasound due to its broad bandwidth and high frequency capabilities. However, the challenges in low generation efficiency need to be addressed. In order to address this issue, a one-pot synthesized polydimethylsiloxane-gold nanoparticle (PDMS/Au NP) nanocomposite was utilized to generate ultrasonic pulses excited by a nanosecond laser. The enhanced efficiency of the photoacoustic signal was investigated by varying the concentration and the thickness of the nanocomposite film. The optimal peak-to-peak amplitude of the acoustic signal was observed to be 189.49 kPa under the laser energy density of 13mJ/cm2 at 1.8 mm away from the nanocomposite film, when the thickness and the concentration of the film were 450 μm and 1.79 wt. %, respectively. Furthermore, the efficiency of the photoacoustic generation was increased 3 orders of magnitude compared to the aluminum thin film. The results indicate that high photoacoustic generation efficiency could be achieved through the PDMS/Au NPs nanocomposite.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription