Abstract

When a pump beam is propagating through a silicon nanophotonic waveguide, a very small fraction of the light is scattered to other frequencies. At very low intensity, the amount of scattered light is proportional to the power of the pump beam. We show that the scattering intensity increases linearly within the temperature range 300–575 K and that the photon flux decreases as the inverse of the frequency detuning ν over the investigated bandwidth 0.4THz<|ν|<2.5THz. The simplest interpretation of these observations is that the pump beam is scattered on a one-dimensional thermal bath of excitations. Finally, the implications of this scattering process for quantum optics applications of silicon nanophotonic structures are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [CrossRef]
  2. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Opt. Express 10, 1305–1313 (2002).
  3. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
    [CrossRef]
  4. D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
    [CrossRef]
  5. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [CrossRef]
  6. Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31, 3140–3142 (2006).
    [CrossRef]
  7. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
    [CrossRef]
  8. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
    [CrossRef]
  9. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
    [CrossRef]
  10. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
    [CrossRef]
  11. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
    [CrossRef]
  12. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  13. S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
    [CrossRef]
  14. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007(2008).
    [CrossRef]
  15. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
    [CrossRef]
  16. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. G. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193 nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
    [CrossRef]
  17. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
    [CrossRef]
  18. S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Phys. Rev. B 50, 2221–2226 (1994).
    [CrossRef]
  19. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
    [CrossRef]
  20. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
    [CrossRef]
  21. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  22. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [CrossRef]
  23. E. Brainis, S. Clemmen, and Serge Massar, “Spontaneous growth of Raman stokes and anti-Stokes waves in fibers,” Opt. Lett. 32, 2819–2821 (2007).
    [CrossRef]

2012 (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

2010 (3)

2009 (4)

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. G. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193 nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

2008 (3)

2007 (3)

2006 (2)

2004 (2)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef]

2002 (3)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Opt. Express 10, 1305–1313 (2002).

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

1994 (1)

S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Phys. Rev. B 50, 2221–2226 (1994).
[CrossRef]

Agrawal, G. P.

Baets, R.

Baets, R. G.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. G. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193 nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bogaerts, W.

S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. G. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193 nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Brainis, E.

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

Chen, J.

Chou, M. Y.

S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Phys. Rev. B 50, 2221–2226 (1994).
[CrossRef]

Claps, R.

Clemmen, S.

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Dimitropoulos, D.

Dumon, P.

Emplit, Ph.

S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[CrossRef]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Foster, M. A.

Fukuda, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Gaeta, A. L.

Han, Y.

Harada, K.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Itabashi, S.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Jaenen, P.

Jalali, B.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Opt. Express 10, 1305–1313 (2002).

Koonath, P.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Kumar, P.

Lee, K. F.

Levy, J. S.

Li, X.

Lin, Q.

Lipson, M.

Liu, Y.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007(2008).
[CrossRef]

Massar, S.

S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[CrossRef]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

Massar, Serge

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Painter, O. J.

Perret, A.

Phan Huy, K.

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

Poitras, C. B.

Rakich, P. T.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

Salem, R.

Schmidt, B. S.

Selvaraja, S. K.

Sharping, J.

Sharping, J. E.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Solli, D. R.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Takesue, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Tokura, Y.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Tsang, H. K.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007(2008).
[CrossRef]

Tsuchizawa, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

van Thourhout, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Voss, P.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Wang, Z.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

Watanabe, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Wei, S.

S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Phys. Rev. B 50, 2221–2226 (1994).
[CrossRef]

Yamada, K.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, I. Moerman, S. Verstuyft, K. De Mesel, and R. G. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (8)

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, 16558–16570 (2009).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Opt. Express 10, 1305–1313 (2002).

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (3)

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79, 053853 (2009).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Phys. Rev. B (1)

S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Phys. Rev. B 50, 2221–2226 (1994).
[CrossRef]

Phys. Rev. X (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
[CrossRef]

Semicond. Sci. Technol. (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23, 064007(2008).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. Photon flux is generated in the top part of the setup and the bottom part is used to analyze this flux in the Stokes and anti-Stokes bands. Laser, CW laser source at 1539.8 nm; EDFA, erbium-doped fiber amplifier; pc, polarization controller; bpf, bandpass filter to clean the pump beam; col, collimation lens; P-meter, power meter; flip flop, mirror used to measure the input power; SWW, silicon wire waveguide; demux, demultiplexer; bbf, bandblock filter; tf, tunable filter; apd, avalanche photodiode; pg, pulse generator; tdc, time-to-digital converter + computer.

Fig. 2.
Fig. 2.

Experimentally recorded photon flux generated in the Stokes band (1541–1558 nm) as a function of the pump power. Solid line, second-order polynomial fit Φ=aP2+bP; dotted curves, linear (bP) and quadratic (aP2) contributions.

Fig. 3.
Fig. 3.

(a) Generated photon flux in the Stokes (plusses) and anti-Stokes (circles) bands (1541.5–1558.5 nm and 1522–1528 nm, respectively), for P=250μW. The solid curves are theoretical fits with a Bose–Einstein distribution [see Eq. (2)]. (b) Photon flux generated in the filtering line itself at Stokes (plusses) and anti-Stokes (circles) frequencies for input power P=1.25mW. Solid curves, fit following the Raman noise in a silica fiber. (c) Photon pair flux generated in the silicon waveguide (plusses) and fit following Eq. (1) (curve); input power, 1.75 mW. Error bars are calculated from statistical error as well as error on outcoupling losses. In these figures, the flux for each data point is corrected by subtracting the loss spectrum and dark counts from the detectors. (d) Scattering flux, (a) subtracted by rescaled curves presented in (b) and (c). The fact that the data plotted in (d) are practically identical to those in (a) shows graphically that the scattered photons do not arise from incoupling or outcoupling fibers, nor from photon pair generation. The experiments have been performed at different input powers to ensure similar statistical errors. The left axis refers to the actual power, while the right axis (colored in green) rescales the data to input power P=250μW to enable comparison with the spectrum reported in (a) (see discussion in main text).

Fig. 4.
Fig. 4.

Flux generated in the anti-Stokes band as a function of the SWW temperature (circles) and linear fit (solid line).

Fig. 5.
Fig. 5.

Emitted flux response time. Measured temporal profile of the input pump pulse (asterisks) and corresponding total photon flux emitted at both Stokes and anti-Stokes frequencies [top three (red) curves] for 300 μW (triangles), 1.25 mW (circles), and 2.5 mW (arrows) peak pump power. The black dotted curve shows the temporal dynamic of the carrier density due to the laser pulse assuming a carrier lifetime of 1 ns. Rise/fall time (10%–90%) is the same (450 ps) for both the laser and the three scattered fluxes. The corresponding rise/fall time (10%–90%) of the carrier population is 2.3 ns assuming a 1 ns lifetime. The scattered flux is thus independent of the carrier population.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ=Δν|γPLsinc[β2122πνL(β2(2πν)24+γP)12]|2dν
Pscat=κ[1exp(h|ν|/kbT)1+12(1sign(ν))]LΔνP,

Metrics