Abstract

Phase matching curves for parametric generation in four wave mixing (FWM) processes of different types are studied experimentally and numerically for a polarization maintaining photonic crystal fiber pumped by a tunable continuous wave ytterbium doped fiber laser near 1 μm. Parametric frequency shifts of up to 100 THz for scalar and pump-divided vector FWM processes are observed providing generation of an idler wave with wavelengths as short as 765 and 758 nm for the two processes, respectively. Explicit analytical solutions for the scalar and polarization phase matching in the vicinity of zero dispersion wavelength have been also deduced. They are based on the phase-mismatch Taylor series expansion taking into account the polarization contribution. A good quantitative agreement between the experimental and calculated frequency shifts is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26, 2184–2191 (2008).
    [CrossRef]
  2. B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. 29, 410–416 (2011).
    [CrossRef]
  3. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15, 2947–2952 (2007).
    [CrossRef]
  4. R. Malik and M. E. Marhic, “Tunable continuous-wave fiber optical parametric oscillator with 1 W output power,” in National Fiber Optic Engineers ConferenceOSA Technical Digest(Optical Society of America, 2010), paper JWA18.
  5. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
    [CrossRef]
  6. K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible,” New J. Phys. 8, 207 (2006).
    [CrossRef]
  7. R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).
    [CrossRef]
  8. J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett. 31, 873–875 (2006).
    [CrossRef]
  9. A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
    [CrossRef]
  10. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
    [CrossRef]
  11. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
    [CrossRef]
  12. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47, 1396–1403 (2011).
    [CrossRef]
  13. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tunnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009).
    [CrossRef]
  14. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
    [CrossRef]
  15. A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett. 37, 82–84 (2012).
    [CrossRef]
  16. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
    [CrossRef]
  17. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011).
    [CrossRef]
  18. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
    [CrossRef]
  19. R. K. Jain and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  21. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
    [CrossRef]
  22. L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
    [CrossRef]
  23. Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.
  24. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007).
    [CrossRef]
  25. S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
    [CrossRef]
  26. S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007).
    [CrossRef]
  27. A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
    [CrossRef]
  28. S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
    [CrossRef]
  29. http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .
  30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
    [CrossRef]
  31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
    [CrossRef]
  32. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
    [CrossRef]
  33. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
    [CrossRef]
  34. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
    [CrossRef]
  35. S. J. Garth and C. Pask, “Four-photon mixing and dispersion in single-mode fibers,” Opt. Lett. 11, 380–382 (1986).
    [CrossRef]
  36. I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).
  37. F. Yaman, Q. Lin, and G. P. Agrawal, “Fiber-optic parametric amplifiers for lightwave systems,” in Guided Wave Optical Components and DevicesB. P. Pal, ed. (Academic, 2005), Chap. 7.
  38. V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
    [CrossRef]
  39. A. Canagasabey, C. Corbari, Zh. Zhang, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32, 1863–1865 (2007).
    [CrossRef]

2012 (1)

2011 (4)

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47, 1396–1403 (2011).
[CrossRef]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011).
[CrossRef]

B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. 29, 410–416 (2011).
[CrossRef]

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

2010 (4)

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[CrossRef]

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
[CrossRef]

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (8)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
[CrossRef]

K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15, 2947–2952 (2007).
[CrossRef]

L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007).
[CrossRef]

S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
[CrossRef]

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007).
[CrossRef]

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

A. Canagasabey, C. Corbari, Zh. Zhang, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32, 1863–1865 (2007).
[CrossRef]

L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2002 (2)

2000 (1)

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

1994 (1)

1990 (2)

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

1986 (1)

1984 (1)

R. K. Jain and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984).
[CrossRef]

1982 (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

Afanasiev, D. M.

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Agrawal, G. P.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

F. Yaman, Q. Lin, and G. P. Agrawal, “Fiber-optic parametric amplifiers for lightwave systems,” in Guided Wave Optical Components and DevicesB. P. Pal, ed. (Academic, 2005), Chap. 7.

Akulov, V. A.

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Alibart, O.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Alic, N.

Babin, S. A.

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011).
[CrossRef]

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
[CrossRef]

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007).
[CrossRef]

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Bell, B.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Biancalana, F.

Birks, T. A.

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

Botten, L. C.

Bronshtein, I. N.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).

Bubnov, M. M.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Canagasabey, A.

Cemlyn, B.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Chen, J. S. Y.

Chen, W.

L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
[CrossRef]

Churkin, D. V.

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Clark, A.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Corbari, C.

de Sterke, C. M.

Demokan, M. S.

Deng, Y.

Denisov, A. V.

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

Dianov, E. M.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Drummond, P. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Dudley, J. M.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Egorova, O. N.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Eisenstein, G.

Fulconis, J.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Garth, S. J.

Gershikov, A.

Golovchenko, E. A.

Gur’yanov, A. N.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Halder, M. M.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Harvey, J. D.

Herzog, A.

Ibsen, M.

Ishaaya, A. A.

Jain, R. K.

R. K. Jain and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984).
[CrossRef]

Jauregui, C.

Jin, W.

Joly, N.

Joly, N. Y.

Kablukov, S. I.

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011).
[CrossRef]

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007).
[CrossRef]

S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
[CrossRef]

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Kaneshima, K.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Kawanami, K.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Kazansky, P. G.

Kennedy, T. A. B.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Kharenko, D. S.

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

Khopin, V. F.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Knight, J. C.

Knox, W. H.

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Koshiba, M.

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible,” New J. Phys. 8, 207 (2006).
[CrossRef]

Kruhlak, R. J.

Kuhlmey, B. T.

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Kuo, B. P.-P.

Kurkov, A. S.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
[CrossRef]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Laptev, A. Yu.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Leonhardt, R.

Li, H.

L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
[CrossRef]

Limpert, J.

Lin, Q.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
[CrossRef]

F. Yaman, Q. Lin, and G. P. Agrawal, “Fiber-optic parametric amplifiers for lightwave systems,” in Guided Wave Optical Components and DevicesB. P. Pal, ed. (Academic, 2005), Chap. 7.

Lou, S.

L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
[CrossRef]

Lu, F.

Malik, R.

R. Malik and M. E. Marhic, “Tunable continuous-wave fiber optical parametric oscillator with 1 W output power,” in National Fiber Optic Engineers ConferenceOSA Technical Digest(Optical Society of America, 2010), paper JWA18.

Marhic, M. E.

R. Malik and M. E. Marhic, “Tunable continuous-wave fiber optical parametric oscillator with 1 W output power,” in National Fiber Optic Engineers ConferenceOSA Technical Digest(Optical Society of America, 2010), paper JWA18.

Marie, V.

Maystre, D.

McPhedran, R. C.

Medvedkov, O. I.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Miyagi, K.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Mortensen, N. A.

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible,” New J. Phys. 8, 207 (2006).
[CrossRef]

Muehlig, H.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).

Murdoch, S. G.

Musiol, G.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).

Namihira, Y.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Nilsson, J.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47, 1396–1403 (2011).
[CrossRef]

Nodop, D.

Paramonov, V. M.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Pask, C.

Pershina, E. V.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Pietra, G.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Pilipetskii, A. N.

Radic, S.

Rarity, J. G.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Renversez, G.

Rothenberg, J. E.

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef]

Russell, P. St. J.

Rybakov, M. A.

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Saitoh, K.

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible,” New J. Phys. 8, 207 (2006).
[CrossRef]

Schimpf, D.

Semendyayev, K. A.

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).

Semenov, S. L.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Shamir, A.

Sharping, J. E.

Shelemba, I. S.

S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
[CrossRef]

Shumakher, E.

Smirnov, S. V.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Stenersen, K.

R. K. Jain and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984).
[CrossRef]

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

Tadakuma, M.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Tunnermann, A.

Umnikov, A. A.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Van der Westhuizen, G.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47, 1396–1403 (2011).
[CrossRef]

Vasil’ev, S. A.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Vechkanov, N. I.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

Vinegoni, C.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

Vlasov, A. A.

S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
[CrossRef]

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007).
[CrossRef]

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Wadsworth, W. J.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
[CrossRef]

Wang, L.

L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
[CrossRef]

Wang, Y. P.

White, T. P.

Willinger, A.

Wong, G. K. L.

Wong, K. L.

Wysocki, P. F.

Xiao, L.

Xiao, L. M.

Xiong, C.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Yaman, F.

F. Yaman, Q. Lin, and G. P. Agrawal, “Fiber-optic parametric amplifiers for lightwave systems,” in Guided Wave Optical Components and DevicesB. P. Pal, ed. (Academic, 2005), Chap. 7.

Zhang, Zh.

Zhao, C.-L.

Zlobina, E. A.

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011).
[CrossRef]

Appl. Phys. B (1)

R. K. Jain and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984).
[CrossRef]

Chin. Phys. B (1)

L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47, 1396–1403 (2011).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Laser Phys. (5)

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010).
[CrossRef]

S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007).
[CrossRef]

S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007).
[CrossRef]

V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007).
[CrossRef]

Laser Phys. Lett. (1)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
[CrossRef]

New J. Phys. (2)

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible,” New J. Phys. 8, 207 (2006).
[CrossRef]

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011).
[CrossRef]

Opt. Commun. (1)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

A. Canagasabey, C. Corbari, Zh. Zhang, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32, 1863–1865 (2007).
[CrossRef]

A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett. 37, 82–84 (2012).
[CrossRef]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tunnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009).
[CrossRef]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[CrossRef]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
[CrossRef]

J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett. 31, 873–875 (2006).
[CrossRef]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).
[CrossRef]

L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007).
[CrossRef]

S. J. Garth and C. Pask, “Four-photon mixing and dispersion in single-mode fibers,” Opt. Lett. 11, 380–382 (1986).
[CrossRef]

Phys. Rev. A (1)

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef]

Quantum Electron. (2)

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000).
[CrossRef]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011).
[CrossRef]

Other (6)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

R. Malik and M. E. Marhic, “Tunable continuous-wave fiber optical parametric oscillator with 1 W output power,” in National Fiber Optic Engineers ConferenceOSA Technical Digest(Optical Society of America, 2010), paper JWA18.

Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.

http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).

F. Yaman, Q. Lin, and G. P. Agrawal, “Fiber-optic parametric amplifiers for lightwave systems,” in Guided Wave Optical Components and DevicesB. P. Pal, ed. (Academic, 2005), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic phase-matching diagram without nonlinear contribution.

Fig. 2.
Fig. 2.

Scanning electron microscope imaging of LMA5-PM PCF.

Fig. 3.
Fig. 3.

Schematic experimental setup.

Fig. 4.
Fig. 4.

Scalar FWM phase matching curves in LMA5-PM PCF. Open circles, signal wave; closed circles, idler wave; solid curve, slow index mode; dotted curve, average index mode; dashed curve, fast index mode. Inset shows zoomed region near ZDW.

Fig. 5.
Fig. 5.

Pump-divided vector FWM phase matching curves in LMA5-PM PCF. Closed circles, idler wave; open circles, signal wave; dashed curves, positive branches of vector FWM; solid curve, negative branch of vector FWM; crosses, average index mode of scalar FWM; dotted line is y=x line.

Fig. 6.
Fig. 6.

Experimental output spectra for the scalar FWM (a) and the pump-divided FWM (b). In (a) 1, 2, 3 correspond to pump wavelengths of 1025, 1041, and 1051 nm, respectively. In (b) 1, 2, 3 correspond to pump wavelengths of 1013, 1016, and 1028 nm, respectively.

Fig. 7.
Fig. 7.

Dispersion parameter of LMA5-PM fiber simulated by CUDOS MOF program for parameters Λ=3.25 and d/Λ=0.44325. Polarization is ignored.

Fig. 8.
Fig. 8.

Experimental (circles) and calculated sideband wavelengths for slow axis with (solid line) and without (dashed line) nonlinear contribution ΔβNL to phase matching conditions.

Fig. 9.
Fig. 9.

Comparison of numerical solution (solid line), our analytical solution for parametric shifts at Δβ(ω) expansion in Taylor series up to the forth order (circles) and analytical solution from [19] (dashed line).

Tables (1)

Tables Icon

Table 1. Pitch and Pitch Ratio Used for Numerical Calculations of Fiber Dispersion for Different Axes and Estimated Higher Order Fiber Dispersion Parameters

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Δβ=ΔβL+ΔβNL=0,
nslow(ω)=nav(ω)+δn/2andnfast(ω)=nav(ω)δn/2.
Δβ(Ω)=β(ωa)β(ωs)2β(ωp)±δnΩ/c,
Ω=δnc|β2(ωp)|,
Ω3+pΩ+q=0
Ω(ωp)=(p)1/2=(12(β3/β4)δωp6δωp2)1/2.
Ω=(Q1/2q/2)2/3p/3(Q1/2q/2)1/3.
Ω=2rcos(θ/3),
Ω|qp|=δnc|β3δωp+β4δωp2/2|.
Ω1=2rcos[(πθ)/3]
Ω2=2rcos[(π+θ)/3].
Ω1,2=(q/2)1/3=(p/3)1/2.
δωturn=(β3/β4)+[(β3/β4)2+12(6δncβ4)2/3]1/2,Ωturn=(6δncβ4)1/3.
β(ω)=k=1βk(ωω0)kk!,βk=dkβdωk|ω=ω0,
Δβ(Ω)=β(ωa)+β(ωs)2β(ωp)±δnΩ/c=i=15Δβi(Ω)±δnΩ/c,
Δβ1(Ω)=0,Δβ2(Ω)=0asβ2=0,Δβ3(Ω)=β3δωpΩ2,Δβ4(Ω)=(β4/12)(Ω4+6δωp2Ω2),Δβ5(Ω)=(β5/12)(δωpΩ4+2δωp3Ω2),
Δβ(Ω)=Ω[(β4/12+δωpβ5/12)Ω3+(δωpβ3+δωp2β4/2+δωp3β5/6)Ω±δn/c].
Ω3+pΩ+q=0
Ω(Ω3+pΩ+q)+C=0,
(3Ω2+p)ΩδΩ+(6Ω2+p)δΩ2+C=0.
δΩΩC/Ω23Ω2+p.

Metrics