Abstract

We present a detailed investigation of a photorefractive surface plasmon polariton system capable of coupling energy between two predefined surface plasmon modes with efficiencies up to 25%. We have investigated the dependence of the diffraction efficiency on the energy, the initial and final wavevectors of the surface plasmon modes, and the cell parameters. We have also developed numerical simulations of the system based upon the defect-free Q-tensor approach and rigorous diffraction theory, which fit the experimental data very well and have allowed us to develop a good theoretical understanding of the performance of these cells. On the basis of the experimental results and theory we discuss the prospects that a hybrid liquid crystal photorefractive system could lead to photorefractive gain for surface plasmon polaritons.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription