Abstract

We present a detailed investigation of a photorefractive surface plasmon polariton system capable of coupling energy between two predefined surface plasmon modes with efficiencies up to 25%. We have investigated the dependence of the diffraction efficiency on the energy, the initial and final wavevectors of the surface plasmon modes, and the cell parameters. We have also developed numerical simulations of the system based upon the defect-free Q-tensor approach and rigorous diffraction theory, which fit the experimental data very well and have allowed us to develop a good theoretical understanding of the performance of these cells. On the basis of the experimental results and theory we discuss the prospects that a hybrid liquid crystal photorefractive system could lead to photorefractive gain for surface plasmon polaritons.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical Bioanalytical Chem. 377, 528–539(2003).
    [CrossRef]
  2. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
    [CrossRef]
  3. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
    [CrossRef]
  4. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick and 55 nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef]
  5. G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Analytical Bioanalytical Chem. 382, 1751–1770 (2005).
    [CrossRef]
  6. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef]
  7. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
    [CrossRef]
  8. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
    [CrossRef]
  9. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
    [CrossRef]
  10. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
    [CrossRef]
  11. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
    [CrossRef]
  12. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
    [CrossRef]
  13. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
    [CrossRef]
  14. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M. Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229–1231 (1997).
    [CrossRef]
  15. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, 2006), p. 3.
  16. B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, “High Photorefractive gain in 2-beam coupling with moving fringes in Gaas-Cr crystals,” Opt. Lett. 13, 327–329 (1988).
    [CrossRef]
  17. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th (corrected) ed. (Cambridge University, 1997).
  19. J. M. Simon and V. A. Presa, “Surface electromagnetic-waves at the interface with anisotropic media,” J. Mod. Opt. 42, 2201–2211 (1995).
  20. V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
    [CrossRef]
  21. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals2nd ed. (Oxford University, 1993).
  22. K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010).
    [CrossRef]
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  24. K. Rokushima and J. Yamakita, “Analysis of anisotropic dielectric gratings,” J. Opt. Soc. Am. 73, 901–908 (1983).
    [CrossRef]
  25. E. N. Glytsis and T. K. Gaylord, “3-Dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990).
    [CrossRef]
  26. K. R. Daly, “Light-matter interaction in liquid crystal cells,” Ph.D thesis (School of Mathematics, University of Southampton, 2011). http://eprints.soton.ac.uk/176449/1/PhDthesis_krd_published.pdf .
  27. D. Y. K. Ko and J. R. Sambles, “Scattering matrix-method for propagation of radiation in stratified media—Attenuated total reflection studies of liquid-crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).
    [CrossRef]
  28. K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987).
    [CrossRef]
  29. K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
    [CrossRef]
  30. T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999).
    [CrossRef]
  31. F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
    [CrossRef]
  32. P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

2011 (2)

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[CrossRef]

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

2010 (1)

K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010).
[CrossRef]

2009 (1)

V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
[CrossRef]

2008 (2)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
[CrossRef]

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
[CrossRef]

2007 (2)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

2006 (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick and 55 nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

2005 (3)

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Analytical Bioanalytical Chem. 382, 1751–1770 (2005).
[CrossRef]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[CrossRef]

2004 (1)

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
[CrossRef]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical Bioanalytical Chem. 377, 528–539(2003).
[CrossRef]

2002 (1)

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
[CrossRef]

2001 (1)

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
[CrossRef]

1999 (1)

T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999).
[CrossRef]

1998 (1)

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

1997 (1)

1995 (1)

J. M. Simon and V. A. Presa, “Surface electromagnetic-waves at the interface with anisotropic media,” J. Mod. Opt. 42, 2201–2211 (1995).

1994 (1)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

1990 (1)

1988 (2)

1987 (1)

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987).
[CrossRef]

1985 (1)

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

1983 (1)

1981 (1)

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[CrossRef]

Abbott, S.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[CrossRef]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Bai, F. L.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Baker, G. A.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Analytical Bioanalytical Chem. 382, 1751–1770 (2005).
[CrossRef]

Bartkiewicz, S.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
[CrossRef]

Blaikie, R. J.

Born, M.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th (corrected) ed. (Cambridge University, 1997).

Chen, P.

Clark, M. G.

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987).
[CrossRef]

Cox, S. J.

V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
[CrossRef]

D’Alessandro, G.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010).
[CrossRef]

Daly, K. R.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010).
[CrossRef]

K. R. Daly, “Light-matter interaction in liquid crystal cells,” Ph.D thesis (School of Mathematics, University of Southampton, 2011). http://eprints.soton.ac.uk/176449/1/PhDthesis_krd_published.pdf .

Davis, C. C.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals2nd ed. (Oxford University, 1993).

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Dyadyusha, A.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
[CrossRef]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Fan, L. Z.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Guenther, B. D.

Gungor, A.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
[CrossRef]

Günter, P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, 2006), p. 3.

Guo, Z. X.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Hanabusa, K.

T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Herriau, J. P.

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical Bioanalytical Chem. 377, 528–539(2003).
[CrossRef]

Hsiao, V. K. S.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
[CrossRef]

Huang, T. J.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
[CrossRef]

Huignard, J. P.

B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, “High Photorefractive gain in 2-beam coupling with moving fringes in Gaas-Cr crystals,” Opt. Lett. 13, 327–329 (1988).
[CrossRef]

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, 2006), p. 3.

Imbert, B.

Juluri, B. K.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
[CrossRef]

Kaczmarek, M.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
[CrossRef]

Kajzar, F.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
[CrossRef]

Kato, T.

T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999).
[CrossRef]

Khoo, I. C.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
[CrossRef]

I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M. Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229–1231 (1997).
[CrossRef]

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

Ko, D. Y. K.

Kubytskyi, V. O.

V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick and 55 nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Kutsuna, T.

T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999).
[CrossRef]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[CrossRef]

Li, F. Y.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Li, Y. L.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
[CrossRef]

Mallick, S.

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Matczyszyn, K.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
[CrossRef]

Meerholz, K.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

Melville, D. O. S.

Miniewicz, A.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick and 55 nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Mo, Y. M.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Moharam, M. G.

Moore, D. S.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Analytical Bioanalytical Chem. 382, 1751–1770 (2005).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[CrossRef]

Peyghambarian, N.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Presa, V. A.

J. M. Simon and V. A. Presa, “Surface electromagnetic-waves at the interface with anisotropic media,” J. Mod. Opt. 42, 2201–2211 (1995).

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals2nd ed. (Oxford University, 1993).

Rajbenbach, H.

B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, “High Photorefractive gain in 2-beam coupling with moving fringes in Gaas-Cr crystals,” Opt. Lett. 13, 327–329 (1988).
[CrossRef]

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

Refregier, P.

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

Reshetnyak, V. Y.

V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
[CrossRef]

Rokushima, K.

Sambles, J. R.

D. Y. K. Ko and J. R. Sambles, “Scattering matrix-method for propagation of radiation in stratified media—Attenuated total reflection studies of liquid-crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).
[CrossRef]

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
[CrossRef]

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

Shih, M. Y.

Simon, J. M.

J. M. Simon and V. A. Presa, “Surface electromagnetic-waves at the interface with anisotropic media,” J. Mod. Opt. 42, 2201–2211 (1995).

Sluckin, T. J.

V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
[CrossRef]

Slussarenko, S.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
[CrossRef]

Smith, D. C.

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
[CrossRef]

Solymar, L.

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
[CrossRef]

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

Welford, K. R.

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th (corrected) ed. (Cambridge University, 1997).

Wood, M. V.

Yamakita, J.

Zayats, A. V.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
[CrossRef]

Zheng, Y. B.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
[CrossRef]

Zhu, D. B.

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Adv. Mater. (1)

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528 (2008).
[CrossRef]

Analytical Bioanalytical Chem. (2)

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Analytical Bioanalytical Chem. 382, 1751–1770 (2005).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical Bioanalytical Chem. 377, 528–539(2003).
[CrossRef]

Appl. Phys. (2)

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” Appl. Phys. 96, 2616–2623 (2004).
[CrossRef]

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” Appl. Phys. 58, 45–57 (1985).

J. Mod. Opt. (1)

J. M. Simon and V. A. Presa, “Surface electromagnetic-waves at the interface with anisotropic media,” J. Mod. Opt. 42, 2201–2211 (1995).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 2, 1874–1881 (2011).
[CrossRef]

Liq. Cryst. (1)

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid-crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105 (1987).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

T. Kato, T. Kutsuna, and K. Hanabusa, “Liquid-crystalline physical gels formed by the aggregation of trans-(1R,2R)-bis (dodecanoylamino) cyclohexane in a thermotropic nematic liquid crystal. Phase behavior and electro-optic properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 332, 2887–2892 (1999).
[CrossRef]

Nano Lett. (1)

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a Ssingle plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[CrossRef]

Nat. Photon. (2)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photon. 1, 402–406 (2007).
[CrossRef]

Nature (1)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent,” Nature 371, 497–500 (1994).
[CrossRef]

Opt. Commun. (1)

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun. 187, 257–261 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

V. O. Kubytskyi, V. Y. Reshetnyak, T. J. Sluckin, and S. J. Cox, “Theory of surface-potential-mediated photorefractivelike effects in liquid crystals,” Phys. Rev. E 79 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick and 55 nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88 (2002).
[CrossRef]

Science (2)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Siam J. Appl. Math. (1)

K. R. Daly, G. D’Alessandro, and M. Kaczmarek, “An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects,” Siam J. Appl. Math. 70, 2844–2860(2010).
[CrossRef]

Solid State Commun. (1)

F. Y. Li, Y. L. Li, Z. X. Guo, Y. M. Mo, L. Z. Fan, F. L. Bai, and D. B. Zhu, “Photoconductivity of C_[60]fullerene derivative doped PVK,” Solid State Commun. 107, 189–192 (1998).
[CrossRef]

Other (4)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals2nd ed. (Oxford University, 1993).

K. R. Daly, “Light-matter interaction in liquid crystal cells,” Ph.D thesis (School of Mathematics, University of Southampton, 2011). http://eprints.soton.ac.uk/176449/1/PhDthesis_krd_published.pdf .

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, 2006), p. 3.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th (corrected) ed. (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Structure of the hybrid photorefractive plasmonic liquid crystal cell with typical layer thicknesses.

Fig. 2.
Fig. 2.

Design of the hemisphere used in the Kretschmann experiments. (a) Separated schematics of the prism and sample. (b) The focused attenuated total-internal reflection (ATR) white light beams pass through the curved surface to remove the effects of refraction from the system. The coherent 532 nm laser beams used to write the grating pass through the flat face.

Fig. 3.
Fig. 3.

Schematic (x-z) plane view of the experimental system used for SPP measurements. The coordinate system is tied to the cell, which is fixed in the experiment: the z-axis is the normal to the plane of SPP propagation and the x-axis is horizontal. The light used to excite the SPP originates from a fiber (100 μm core) coupled white light source. It is modulated by a shutter in a manner that is phase locked by a phase locked loop (PLL) to the potential difference applied across the LC cell. The grating beams can be rotated around the z axis by an angle 0°ϕ360°. The fiber detector is mounted on a two-axis rotation stage that allows to rotate it by an angle 0°θ360° relative to the z axis in the x-z plane and by an angle 60°φ90° relative to the z axis in the y-z plane.

Fig. 4.
Fig. 4.

Typical impedance measurements: (a) the magnitude of the impedance; (b) the phase shift of the applied potential for a cell at various 532 nm light intensities. The dark background is less than 100nWcm2. A simple multiple parallel resistor-capacitor equivalent circuit model achieves a good fit to the electrical properties in the dark (solid line). However, the electrical nonlinearities of the PVK with illumination result in this model not being valid for frequencies below 8 Hz.

Fig. 5.
Fig. 5.

(a) Dimensionless wavevector of a 1.462 eV SPP in a cell as a function of the incident intensity of λ=532nm light when 10 V (0.5 Hz) is applied. (b) A typical dispersion relation of SPP in these cells under different conditions. In the “dark” the illumination is <50nWcm2. In the “light” the intensity of 532 nm radiation is 4.95mWcm2. k0 is the wavevector of free-space light with the same energy as the SPP mode.

Fig. 6.
Fig. 6.

Diffraction of a 1.46 eV SPP with for various orientations (ϕ) of a 5 μm grating. (a) ϕ=87°, (b) ϕ=93°, (c) ϕ=90°, and (d) ϕ=96°. The middle panel presents the excitation efficiency and the other two panels the diffraction efficiency (×10) in the positive (top) and negative (bottom) diffracted orders. The dashed line is a circle in k-space representing the wavevector contour for a 1.46 eV SPP. kg is represented by the arrows in each figure.

Fig. 7.
Fig. 7.

(a), (b) Dynamics of the system in response to a slow 0.5 Hz V=15V AC potential for 1.462 eV SPP: (a) the SPP wavevector and (b) the diffraction efficiency. The solid gray line represents the AC waveform. (c) The frequency dependence on the magnitude of the diffraction efficiency. The dashed lines are guides for the eye.

Fig. 8.
Fig. 8.

Diffraction efficiency dependence on (a) the magnitude of the applied potential, |V|; (b) the average illumination intensity, IAvg; (c) the energy of the SPP mode, ESPP.

Fig. 9.
Fig. 9.

Diffraction efficiency dependence on the pitch of the grating for (a) increasing potentials, (b) SPP energies, and (c) PVK layer thicknesses. In all cases the same trend is observed even between different batches, (a) versus (b),(c), though the peak pitch is observed to slightly vary. This trend is also confirmed in our numerical simulations (d). However, the optimum pitch is not quite in agreement.

Fig. 10.
Fig. 10.

Experimentally observed orientation dependence on the SPP diffraction. In general, there is no strong orientation dependence except for the anomalous pitch dependent dip at certain orientations that cannot be reproduced by the numerical model.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Q=Slc(n^n^13I),
VAC[V0+V1sin2(12kg·x)],
Eq±=p=aq,p±Aq,p±(z)exp[i(kx+pkg·x)],
Tqaq=aq+1,
a0=S0a0+,
Ex=VACV1kg2sin(ϕ)exp(kgz)sin(kg·x),
Ey=VACV1kg2cos(ϕ)exp(kgz)sin(kg·x),
Ez=VACV1kg2exp(kgz)cos(kg·x)+VAC(V0+12V1).

Metrics