Abstract

Suppression of high-radial-order whispering-gallery modes in a cylindrical microcavity made of electric anisotropic medium was studied by the finite-difference time-domain method. While the electric anisotropy of the microcavity medium increases, the quality factors of high-radial-order whispering-gallery modes decrease more quickly to zero than those of first-radial-order whispering-gallery modes. Thus, for an anisotropic cylindrical microcavity with large enough anisotropy, the spectrum consists of only those resonant peaks corresponding to first-radial-order whispering-gallery modes. This novel characteristic results in widening of the free spectral range of the cylindrical microcavity. Therefore, the anisotropic cylindrical microcavity has potential applications in single-mode low-threshold microlasers and narrow-linewidth wavelength-selective filters.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  2. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
    [CrossRef]
  3. M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
    [CrossRef]
  4. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef]
  5. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
    [CrossRef]
  6. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742–5747 (2001).
    [CrossRef]
  7. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [CrossRef]
  8. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron 12, 143–147 (2006).
    [CrossRef]
  9. M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualizing the whispering-gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999).
    [CrossRef]
  10. D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
    [CrossRef]
  11. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [CrossRef]
  12. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef]
  13. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
    [CrossRef]
  14. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
    [CrossRef]
  15. X.-L. Kang, Y.-P. Li, S.-L. Qiu, and J.-X. Cai, “Spectrum control by anisotropy in a cylindrical microcavity,” Opt. Express 17, 23843–23850 (2009).
    [CrossRef]
  16. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995).
    [CrossRef]
  17. A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).
  18. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
    [CrossRef]
  19. E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
    [CrossRef]
  20. S. Dey and R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
    [CrossRef]
  21. A. Mohammadi, H. Nadgaran, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express 13, 10367–10381 (2005).
    [CrossRef]
  22. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
    [CrossRef]
  23. J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993).
    [CrossRef]
  24. J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Trans. Microwave Theory Tech. 44, 2216–2222 (1996).
    [CrossRef]
  25. S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation,” IEEE Microwave Guided Wave Lett. 8, 415–417 (1998).
    [CrossRef]
  26. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
    [CrossRef]
  27. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
    [CrossRef]

2011 (1)

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

2009 (1)

2007 (2)

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

2006 (5)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron 12, 143–147 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
[CrossRef]

2005 (1)

2004 (1)

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

2003 (2)

2001 (1)

2000 (1)

1999 (2)

M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualizing the whispering-gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999).
[CrossRef]

S. Dey and R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

1998 (1)

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation,” IEEE Microwave Guided Wave Lett. 8, 415–417 (1998).
[CrossRef]

1996 (2)

J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Trans. Microwave Theory Tech. 44, 2216–2222 (1996).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef]

1995 (1)

1994 (1)

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

1993 (2)

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

1988 (1)

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[CrossRef]

Agio, M.

Arnold, S.

Balistreri, M. L. M.

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Benson, T. M.

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Blom, F. C.

Boriskina, S. V.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Boyd, R. W.

Byelobrov, V. O.

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

Cai, J.-X.

Cai, M.

Chin, M. K.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Chu, D. Y.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Ctyroky, J.

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

Daraei, A.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Dey, S.

S. Dey and R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation,” IEEE Microwave Guided Wave Lett. 8, 415–417 (1998).
[CrossRef]

Driessen, A.

Fang, J.

J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Trans. Microwave Theory Tech. 44, 2216–2222 (1996).
[CrossRef]

Fox, A. M.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Gorodetsky, M. L.

Guimaraes, P. S. S.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Guo, L. J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron 12, 143–147 (2006).
[CrossRef]

Hadley, G. R.

Heebner, J. E.

Ho, S. T.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Ho, Y-L. D.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Hoekstra, H. W. J. M.

Holler, S.

Hopkinson, M.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Hudson, S.

J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993).
[CrossRef]

Ilchenko, V. S.

Kang, X.-L.

Khoshsima, M.

Klunder, D. J. W.

Korterik, J. P.

Kuipers, L.

Lam, S.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Levi, A. F. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Li, Y.-P.

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Logan, R. A.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

McCall, S. L.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Mittra, R.

S. Dey and R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation,” IEEE Microwave Guided Wave Lett. 8, 415–417 (1998).
[CrossRef]

Mohammadi, A.

Mohideen, U.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

Nadgaran, H.

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Nosich, A. I.

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
[CrossRef]

Painter, O.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Pearton, S. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Qiu, S.-L.

Rarity, J. G.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Sanvitto, D.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Sauleau, R.

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

Savchenkov, A. A.

Schneider, J.

J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993).
[CrossRef]

Sercel, P. C.

Sewell, P.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

Skolnick, M. S.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Slusher, R. E.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Smotrova, E. I.

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
[CrossRef]

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Taflove, A.

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[CrossRef]

Tahraoui, A.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Teraoka, I.

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Timpson, J. A.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Vahala, K. J.

van Hulst, N. F.

Vinck, H.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Vollmer, F.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Wu, Z.

J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Trans. Microwave Theory Tech. 44, 2216–2222 (1996).
[CrossRef]

Yang, J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron 12, 143–147 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90, 161105 (2007).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron 12, 143–147 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 52–58 (2006).
[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation,” IEEE Microwave Guided Wave Lett. 8, 415–417 (1998).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media,” IEEE Trans. Microwave Theory Tech. 44, 2216–2222 (1996).
[CrossRef]

S. Dey and R. Mittra, “A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators,” IEEE Trans. Microwave Theory Tech. 47, 1737–1739 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Quant. Electron. (1)

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quant. Electron. 39, 1253–1272 (2007).
[CrossRef]

Wave Motion (1)

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[CrossRef]

Other (1)

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of anisotropic cylindrical microcavity. A cylindrical dielectric rod with infinite length, dielectric constant ε1, and radius R=1.5μm is embedded in background medium with dielectric constant ε2=1. The principal axes of anisotropic crystal are set to be the axes of the Cartesian coordinate system. Both source point S and detection point D are located at axis y and have a distance 15R/16 away from the cavity center.

Fig. 2.
Fig. 2.

Spectrum of cylindrical microcavity with nx=ny=2.77. Other parameters are the same as those in Fig. 1.

Fig. 3.
Fig. 3.

Relationship between resonant frequency of WGM and anisotropy factor (nxny)/neff. Black circles, red triangles, green asterisks, and blue squares refer to numerical results for WGM12,1, WGM13,1, WGM10,2, and WGM11,2, respectively. Black solid line, red dashed line, green dotted line, and blue dash-dotted line are the corresponding fitting lines.

Fig. 4.
Fig. 4.

Relationship between Q factor of WGM and anisotropy factor (nxny)/neff. All legends are the same as those in Fig. 3.

Fig. 5.
Fig. 5.

Spectrum of cylindrical microcavity with anisotropy factor (nxny)/neff equal to (a) 0, (b) 0.05, and (c) 0.10, respectively. neff=(nx+ny)/2=2.77 and other parameters are the same as those in Fig. 1.

Fig. 6.
Fig. 6.

Near-field intensity (represented by amplitude of magnetic field Hz0) portraits of (a), (c), (e) WGM14,1 and (b), (d), (f) WGM13,2 in an electric anisotropic microcavity with anisotropy factor (nxny)/neff equal to (a), (b) 0, (c), (d) 0.05, and (e), (f) 0.10, respectively. The intensity of WGM14,1 and WGM13,2 is 8 and 4 times squaring-roots of calculated value, respectively.

Tables (1)

Tables Icon

Table 1. Fitting Parameters for Resonant Frequency and Q factor of WGM12,1, WGM13,1, WGM10,2, and WGM11,2, Respectively, in Fig. 2

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε1=[εx000εy000εz]=[nx000ny000nz]2.

Metrics