Abstract

The effect of polarization on the distribution of plasma in the cross-section induced by a focused femtosecond laser pulse is studied. When a femtosecond laser pulse with a Gaussian spatial distribution and linear polarization is focused into fused silica in a certain focus condition and pulse energy, the induced plasma distribution forms an ellipse at first, and then gradually evolves to an almost perfect circle. The mechanism of this change in plasma distribution is discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [CrossRef]
  2. G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
    [CrossRef]
  3. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride,” Appl. Phys. B 82, 575–583 (2006).
    [CrossRef]
  4. M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92, 253901 (2004).
    [CrossRef]
  5. M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
    [CrossRef]
  6. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
    [CrossRef]
  7. M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecondpulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
    [CrossRef]
  8. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
    [CrossRef]
  9. R. Bourayou, G Méjean, J. Kasparian, M. Rodriguez, E. Salmon, J. Yu, H. Lehmann, B. Stecklum, U. Laux, J. Eislöfel, A. Scholz, A. P. Hatzes, R. Sauerbrey, L. Wöte, and J.-P. Wolf, “White-light filaments for multiparameter analysis of cloud microphysics,” J. Opt. Soc. Am. B 22, 369–377, (2005).
    [CrossRef]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
    [CrossRef]
  12. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [CrossRef]
  13. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
    [CrossRef]
  14. J. Krüger and W. Kautek, “The femtosecond pulse laser: a new tool for micromachining,” Laser Phys. 9, 30–40 (1999).
  15. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001).
    [CrossRef]
  16. J. Yu, H. Jiang, J. Wen, H. Yang, and Q. Gong, “Mechanism of depolarization of white light generated by femtosecond laser pulse in water,” Opt. Express 18, 12581–12586 (2010).
    [CrossRef]
  17. G. Fibich and B. Ilan, “Deterministic vectorial effects lead to multiple filamentation,” Opt. Lett. 26, 840–842 (2001).
    [CrossRef]
  18. S. Chi and Q. Guo, “Vector theory of self-focusing of an optical beam in Kerr media,” Opt. Lett. 20, 1598–1600 (1995).
    [CrossRef]
  19. G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
    [CrossRef]
  20. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, and P. Laporta, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
    [CrossRef]
  21. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
    [CrossRef]
  22. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
    [CrossRef]
  23. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef]
  24. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef]
  25. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33, 2713–2715 (2008).
    [CrossRef]
  26. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
    [CrossRef]
  27. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  28. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [CrossRef]
  29. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
    [CrossRef]

2011 (1)

2010 (1)

2008 (1)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

2006 (3)

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride,” Appl. Phys. B 82, 575–583 (2006).
[CrossRef]

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

2005 (6)

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, and P. Laporta, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
[CrossRef]

R. Bourayou, G Méjean, J. Kasparian, M. Rodriguez, E. Salmon, J. Yu, H. Lehmann, B. Stecklum, U. Laux, J. Eislöfel, A. Scholz, A. P. Hatzes, R. Sauerbrey, L. Wöte, and J.-P. Wolf, “White-light filaments for multiparameter analysis of cloud microphysics,” J. Opt. Soc. Am. B 22, 369–377, (2005).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecondpulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
[CrossRef]

2004 (1)

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

2002 (2)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
[CrossRef]

2001 (4)

1999 (2)

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

J. Krüger and W. Kautek, “The femtosecond pulse laser: a new tool for micromachining,” Laser Phys. 9, 30–40 (1999).

1996 (3)

1995 (1)

1984 (1)

Aköbek, N.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Altucci, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Avaldi, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Becker, A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Benedetti, E.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Beresna, M.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Borrelli, N. F.

Bourayou, R.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Brodeur, A.

Calegari, F.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Callan, J. P.

Campbell, E. E. B.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Cerullo, G.

Chi, S.

Chin, S. L.

Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33, 2713–2715 (2008).
[CrossRef]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

Chiodo, N.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

Davis, K. M.

DeSilvestri, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Dharmadhikari, A. K.

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride,” Appl. Phys. B 82, 575–583 (2006).
[CrossRef]

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

Eislöfel, J.

Fibich, G.

G. Fibich and B. Ilan, “Deterministic vectorial effects lead to multiple filamentation,” Opt. Lett. 26, 840–842 (2001).
[CrossRef]

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[CrossRef]

Finlay, R. J.

Flammini, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Garcia, J. F.

Gecevicius, M.

Glezer, E. N.

Gong, Q.

Guo, Q.

Hatzes, A. P.

Her, T.-H.

Hertel, I. V.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Huang, L.

Ilan, B.

G. Fibich and B. Ilan, “Deterministic vectorial effects lead to multiple filamentation,” Opt. Lett. 26, 840–842 (2001).
[CrossRef]

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[CrossRef]

Itoh, K.

Jiang, H.

Jiang, Y.

Kandidov, V.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Kasparian, J.

Kautek, W.

J. Krüger and W. Kautek, “The femtosecond pulse laser: a new tool for micromachining,” Laser Phys. 9, 30–40 (1999).

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Kluge, M.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Kolesik, M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecondpulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef]

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Kosareva, O.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Krüger, J.

J. Krüger and W. Kautek, “The femtosecond pulse laser: a new tool for micromachining,” Laser Phys. 9, 30–40 (1999).

Kuroda, D.

Laporta, P.

Laux, U.

Lehmann, H.

Li, Y.

Liang, F.

Liu, W.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Maselli, V.

Mathur, D.

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride,” Appl. Phys. B 82, 575–583 (2006).
[CrossRef]

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

Mazur, E.

Méjean, G

Milosavljevic, M.

Miura, K.

Moloney, J. V.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecondpulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

Nishii, J.

Nisoli, M.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Osellame, R.

Penzkofer, A.

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

Poletto, L.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Rajgara, F. A.

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride,” Appl. Phys. B 82, 575–583 (2006).
[CrossRef]

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Rodriguez, M.

Rosenfeld, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Salmon, E.

Sansone, G.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Sauerbrey, R.

Schaffer, C. B.

Scholz, A.

Schreder, B.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Schröer, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Shen, Y. R.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Stagira, S.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Stecklum, B.

Stoian, R.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Streltsov, A. M.

Sugimoto, N.

Sun, Q.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Théberge, F.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Vallée, R.

Velotta, R.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Villoresi, P.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Vozzi, C.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Watanabe, W.

Wen, J.

Wittmann, M.

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

Wolf, J.-P.

Wöte, L.

Wright, E. M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecondpulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef]

Yamada, K.

Yang, G.

Yang, H.

Yin, A.

Yu, J.

Zavelani-Rossi, M.

Zimmer, J.

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

Appl. Phys. B (2)

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride,” Appl. Phys. B 82, 575–583 (2006).
[CrossRef]

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353–355 (2002).
[CrossRef]

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aköbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröer, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

J. Appl. Phys. (1)

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97, 083102 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

J. Krüger and W. Kautek, “The femtosecond pulse laser: a new tool for micromachining,” Laser Phys. 9, 30–40 (1999).

Opt. Commun. (1)

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef]

Physica D (1)

G. Fibich and B. Ilan, “Vectorial and random effects in self-focusing and in multiple filamentation,” Physica D 157, 112–146 (2001).
[CrossRef]

Science (1)

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. M, 800 nm reflector; HWP1, HWP2, half-wave plates; P1, polarizer; L1, lens with focal length of 20 cm; L2, lens with focal length of 50 cm; Pinhole, pinhole with diameter of 9 5 μm; O1, objective (Olympus 10×0.30); O2, objective (Olympus 20×0.28).

Fig. 2.
Fig. 2.

Damage morphology of the front surface of the fused silica glass sample in (a) horizontal and (b) perpendicular polarization.

Fig. 3.
Fig. 3.

One fluorescence image of the plasma generated near the rear surface of the sample. Left, actual image of the plasma; right, a mirror image of the plasma; dashed vertical line, rear surface of the sample (the mirror).

Fig. 4.
Fig. 4.

Damage morphology of the rear surface of the fused silica glass sample with (a) horizontal and (b) vertical polarization. (c) Corresponding CCD images of the plasma generated in the different situations. The laser energy is adjusted to be 2.8 μJ after L2. The dashed vertical line in (c) represents the mirror (the rear surface of the sample). Positions 1, 2, 3, and 4 represent the different situations of the starting point of the plasma with different distance relative to the rear surface of the sample. The red dot indicates the position of starting point of the plasma.

Fig. 5.
Fig. 5.

Damage morphology of the rear surface of the fused silica glass sample with (a) horizontal and (b) vertical polarization. (c) Corresponding CCD images of the plasma generated in the different situations. The diameter of the laser at the focus is increased to threefold compared with Fig. 4, and the laser energy is increased to 5.6 μJ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2E⃗(·E⃗)1c22t2(n2E⃗)=μ0(2P⃗nlt2+J⃗pt),·E⃗=1ε0n2·P⃗NL,P⃗NL=ε0χ(3)[|E⃗|2E⃗+γγ+1(E⃗×E⃗*)×E⃗],

Metrics