Abstract

The codoping of CaF2:Pr3+ with Yb3+ or Lu3+ ions is shown to avoid the clustering of Pr3+ ions, which otherwise prevent Pr3+ doped CaF2 to be used for various photonic applications. The breaking of Pr3+ clusters by Lu3+ ions paves the way towards the development of a Pr3+ doped CaF2 visible laser. On the other hand, the formation of Pr3+-Yb3+ clusters in place of Pr3+ clusters leads to extremely efficient energy transfers between Pr3+ and Yb3+ which could be used for quantum cutting applications. Two types of clusters are observed for both types of codopings. Pr3+ to Yb3+ energy transfer analysis shows that for one of the clusters an ultrafast energy transfer takes place with a rate of 5×107s1, which is likely due to exchange interaction.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
    [CrossRef]
  2. B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
    [CrossRef]
  3. P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
    [CrossRef]
  4. T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
    [CrossRef]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009).
    [CrossRef]
  6. D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
    [CrossRef]
  7. L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
    [CrossRef]
  8. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
    [CrossRef]
  9. D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
    [CrossRef]
  10. B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956).
    [CrossRef]
  11. J. L. Merz and P. S. Pershan, “Charge conversion of irradiated rare-earth ions in calcium fluoride. I,” Phys. Rev. 162, 217–235 (1967).
    [CrossRef]
  12. C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
    [CrossRef]
  13. P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
    [CrossRef]
  14. S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
    [CrossRef]
  15. E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33, 1275–1276 (1960).
    [CrossRef]
  16. J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
    [CrossRef]
  17. J. Sierro, “ESR detection of the hydrolysis of solid CaF2,” J. Chem. Phys. 34, 2183–2184 (1961).
    [CrossRef]
  18. D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977).
    [CrossRef]
  19. M. B. Seelbinder and J. C. Wright, “Identification of higher order clusters in charge compensated materials using three-body energy transfer,” J. Chem. Phys. 75, 5070–5079 (1981).
    [CrossRef]
  20. S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
    [CrossRef]
  21. V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
    [CrossRef]
  22. V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
    [CrossRef]
  23. M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
    [CrossRef]
  24. S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
    [CrossRef]
  25. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
    [CrossRef]
  26. C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
    [CrossRef]
  27. J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978).
    [CrossRef]
  28. K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981).
    [CrossRef]
  29. L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
    [CrossRef]
  30. J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983).
    [CrossRef]
  31. T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
    [CrossRef]
  32. W. A. Hargreaves, “Energy levels of tetragonally sited Pr3+ ions in calcium fluoride crystals,” Phys. Rev. B 6, 3417–3422 (1972).
    [CrossRef]
  33. B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+,R3+ (R3+=Y3+, Gd3+, Nd3+),” Phys. Rev. B 36, 9781–9789 (1987).
    [CrossRef]
  34. D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989).
    [CrossRef]
  35. G. D. Jones and R. J. Reeves, “Na+, Li+ and cubic centres in rare-earth-doped CaF2 and SrF2,” J. Lum. 87–89, 1108–1111 (2000).
    [CrossRef]
  36. J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988).
    [CrossRef]
  37. T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
    [CrossRef]
  38. R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987).
    [CrossRef]
  39. J. Hormadaly and R. Reisfeld, “Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses,” J. Non-Cryst. Solids 30, 337–348 (1979).
    [CrossRef]
  40. M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
    [CrossRef]
  41. A. I. Burshtein, “The influence of the migration mechanism of approaching particles on the energy transfer between them,” J. Lum. 21, 317–321 (1980).
    [CrossRef]
  42. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  43. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
    [CrossRef]
  44. V. S. Mironov, “Superexchange mechanism of energy transfer between neighboring lanthanide ions in dielectric crystals,” Opt. Spectrosc. 88, 372–376 (2000).
    [CrossRef]
  45. L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
    [CrossRef]
  46. V. Lupei and A. Lupei, “Emission dynamics of the F43/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
    [CrossRef]
  47. W. B. Smith and R. C. Powell, “Energy transfer in CaWO4:Sm3+,” J. Chem. Phys. 76, 854–859 (1982).
    [CrossRef]
  48. P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–13 (1959).
    [CrossRef]

2011 (5)

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

2010 (3)

V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
[CrossRef]

L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

2009 (2)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

2008 (1)

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

2007 (1)

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

2005 (1)

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

2004 (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

2002 (2)

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

2001 (1)

L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
[CrossRef]

2000 (3)

G. D. Jones and R. J. Reeves, “Na+, Li+ and cubic centres in rare-earth-doped CaF2 and SrF2,” J. Lum. 87–89, 1108–1111 (2000).
[CrossRef]

V. S. Mironov, “Superexchange mechanism of energy transfer between neighboring lanthanide ions in dielectric crystals,” Opt. Spectrosc. 88, 372–376 (2000).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of the F43/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

1999 (1)

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

1998 (1)

L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
[CrossRef]

1992 (1)

T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
[CrossRef]

1991 (1)

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

1989 (1)

D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989).
[CrossRef]

1988 (1)

J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988).
[CrossRef]

1987 (2)

R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987).
[CrossRef]

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+,R3+ (R3+=Y3+, Gd3+, Nd3+),” Phys. Rev. B 36, 9781–9789 (1987).
[CrossRef]

1985 (1)

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

1984 (1)

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
[CrossRef]

1983 (1)

J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983).
[CrossRef]

1982 (2)

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
[CrossRef]

W. B. Smith and R. C. Powell, “Energy transfer in CaWO4:Sm3+,” J. Chem. Phys. 76, 854–859 (1982).
[CrossRef]

1981 (3)

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981).
[CrossRef]

M. B. Seelbinder and J. C. Wright, “Identification of higher order clusters in charge compensated materials using three-body energy transfer,” J. Chem. Phys. 75, 5070–5079 (1981).
[CrossRef]

1980 (1)

A. I. Burshtein, “The influence of the migration mechanism of approaching particles on the energy transfer between them,” J. Lum. 21, 317–321 (1980).
[CrossRef]

1979 (1)

J. Hormadaly and R. Reisfeld, “Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses,” J. Non-Cryst. Solids 30, 337–348 (1979).
[CrossRef]

1978 (1)

J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978).
[CrossRef]

1977 (1)

D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977).
[CrossRef]

1972 (1)

W. A. Hargreaves, “Energy levels of tetragonally sited Pr3+ ions in calcium fluoride crystals,” Phys. Rev. B 6, 3417–3422 (1972).
[CrossRef]

1967 (1)

J. L. Merz and P. S. Pershan, “Charge conversion of irradiated rare-earth ions in calcium fluoride. I,” Phys. Rev. 162, 217–235 (1967).
[CrossRef]

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

1961 (1)

J. Sierro, “ESR detection of the hydrolysis of solid CaF2,” J. Chem. Phys. 34, 2183–2184 (1961).
[CrossRef]

1960 (1)

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33, 1275–1276 (1960).
[CrossRef]

1959 (1)

P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–13 (1959).
[CrossRef]

1956 (1)

B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Aarts, L.

L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009).
[CrossRef]

Andeen, C.

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

Anderson, P. W.

P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–13 (1959).
[CrossRef]

Balaji, T.

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

Balembois, F.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Barbosa-Garcia, O.

L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
[CrossRef]

Barthem, R. B.

R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987).
[CrossRef]

Benayad, A.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Bendall, P. J.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
[CrossRef]

Bengoechea, J.

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

Bleaney, B.

B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956).
[CrossRef]

Bock, S.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

Boonyarith, T.

T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
[CrossRef]

Braud, A.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Buisson, R.

R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “The influence of the migration mechanism of approaching particles on the energy transfer between them,” J. Lum. 21, 317–321 (1980).
[CrossRef]

Cai, Z.

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

Caird, J. A.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

Camy, P.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

Catlow, C. R. A.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
[CrossRef]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
[CrossRef]

Chase, L. L.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

Chernyshev, V. A.

V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
[CrossRef]

Chrysochoos, J.

J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983).
[CrossRef]

Corish, J.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
[CrossRef]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
[CrossRef]

Courjaud, A.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Daran, E.

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Diaz-Torres, L. A.

L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
[CrossRef]

Doualan, J. L.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

Doualan, J.-L.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

Druon, F.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Dullens, R. P. A.

L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
[CrossRef]

Duran, J.

K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981).
[CrossRef]

J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978).
[CrossRef]

Evesque, P.

K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981).
[CrossRef]

J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978).
[CrossRef]

Eyal, M.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Fontanella, J.

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

Friedman, E.

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33, 1275–1276 (1960).
[CrossRef]

Frit, B.

J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988).
[CrossRef]

Georges, P.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Green, M. A.

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

Greenberg, E.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Gün, T.

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

Hargreaves, W. A.

W. A. Hargreaves, “Energy levels of tetragonally sited Pr3+ ions in calcium fluoride crystals,” Phys. Rev. B 6, 3417–3422 (1972).
[CrossRef]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Hormadaly, J.

J. Hormadaly and R. Reisfeld, “Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses,” J. Non-Cryst. Solids 30, 337–348 (1979).
[CrossRef]

Huber, G.

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Jacobs, P. W. M.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
[CrossRef]

J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983).
[CrossRef]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
[CrossRef]

Jones, D. A.

B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956).
[CrossRef]

Jones, G. D.

G. D. Jones and R. J. Reeves, “Na+, Li+ and cubic centres in rare-earth-doped CaF2 and SrF2,” J. Lum. 87–89, 1108–1111 (2000).
[CrossRef]

Kazanskii, S. A.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

Kimble, R. J.

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

Kliava, J.

J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978).
[CrossRef]

Krupke, W. F.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

Labbé, C.

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

Lacoste, G.

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

Laval, J. P.

J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988).
[CrossRef]

Legros, R.

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

Lifante, G.

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

Llewellyn, P. M.

B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956).
[CrossRef]

Low, W.

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33, 1275–1276 (1960).
[CrossRef]

Luo, B.

T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
[CrossRef]

Lupei, A.

V. Lupei and A. Lupei, “Emission dynamics of the F43/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

Lupei, V.

V. Lupei and A. Lupei, “Emission dynamics of the F43/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

Manson, N. B.

T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
[CrossRef]

Manthey, W. J.

D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989).
[CrossRef]

Martin, J. P. D.

T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
[CrossRef]

Matthews, G. E.

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

McClure, D. S.

D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989).
[CrossRef]

McFarlane, R. A.

L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
[CrossRef]

Meijerink, A.

L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009).
[CrossRef]

L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
[CrossRef]

Ménard, V.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Merz, J. L.

J. L. Merz and P. S. Pershan, “Charge conversion of irradiated rare-earth ions in calcium fluoride. I,” Phys. Rev. 162, 217–235 (1967).
[CrossRef]

Metz, P.

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

Mikou, A.

J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988).
[CrossRef]

Mironov, V. S.

V. S. Mironov, “Superexchange mechanism of energy transfer between neighboring lanthanide ions in dielectric crystals,” Opt. Spectrosc. 88, 372–376 (2000).
[CrossRef]

Moncorgé, R.

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

Moore, D. S.

D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977).
[CrossRef]

Nielsen, N. D.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

Nikiforov, A. E.

V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
[CrossRef]

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

Ong, S. H.

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
[CrossRef]

Ougrumov, M. Y.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

Pack, D. W.

D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989).
[CrossRef]

Papadopoulos, D. N.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Payne, S. A.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

Peijzel, P. S.

L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
[CrossRef]

Pellegrina, A.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Pershan, P. S.

J. L. Merz and P. S. Pershan, “Charge conversion of irradiated rare-earth ions in calcium fluoride. I,” Phys. Rev. 162, 217–235 (1967).
[CrossRef]

Petit, K. H.

K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981).
[CrossRef]

Petit, V.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

Portier, X.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

Powell, R. C.

W. B. Smith and R. C. Powell, “Energy transfer in CaWO4:Sm3+,” J. Chem. Phys. 76, 854–859 (1982).
[CrossRef]

Reeves, R. J.

G. D. Jones and R. J. Reeves, “Na+, Li+ and cubic centres in rare-earth-doped CaF2 and SrF2,” J. Lum. 87–89, 1108–1111 (2000).
[CrossRef]

Reid, M. F.

L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

Reisfeld, R.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

J. Hormadaly and R. Reisfeld, “Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses,” J. Non-Cryst. Solids 30, 337–348 (1979).
[CrossRef]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Ricaud, S.

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Ryskin, A. I.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

Scheidelaar, S.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

Schramm, U.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

Seelbinder, M. B.

M. B. Seelbinder and J. C. Wright, “Identification of higher order clusters in charge compensated materials using three-body energy transfer,” J. Chem. Phys. 75, 5070–5079 (1981).
[CrossRef]

Serrano, D.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

Shakurov, G. S.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

Siebold, M.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

Sierro, J.

J. Sierro, “ESR detection of the hydrolysis of solid CaF2,” J. Chem. Phys. 34, 2183–2184 (1961).
[CrossRef]

Slepukhin, G. S.

V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
[CrossRef]

Smith, L. K.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

Smith, W. B.

W. B. Smith and R. C. Powell, “Energy transfer in CaWO4:Sm3+,” J. Chem. Phys. 76, 854–859 (1982).
[CrossRef]

Spector, N.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Stillman, M. J.

J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983).
[CrossRef]

Struck, C. W.

L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
[CrossRef]

Tallant, D. R.

D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977).
[CrossRef]

Thuau, M.

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

Tissue, B. M.

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+,R3+ (R3+=Y3+, Gd3+, Nd3+),” Phys. Rev. B 36, 9781–9789 (1987).
[CrossRef]

Trupke, T.

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

van der Ende, B.

L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009).
[CrossRef]

van Pieterson, L.

L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
[CrossRef]

van Wijngaarden, J. T.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

Vial, J. C.

R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987).
[CrossRef]

Vlugt, T. J. H.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

Volodin, V. P.

V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
[CrossRef]

Weichmann, U.

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

Welcher, P. J.

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

Wintersgill, M. C.

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

Wright, J. C.

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+,R3+ (R3+=Y3+, Gd3+, Nd3+),” Phys. Rev. B 36, 9781–9789 (1987).
[CrossRef]

M. B. Seelbinder and J. C. Wright, “Identification of higher order clusters in charge compensated materials using three-body energy transfer,” J. Chem. Phys. 75, 5070–5079 (1981).
[CrossRef]

D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977).
[CrossRef]

Xu, B.

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

Zakharov, A. Y.

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077(2009).
[CrossRef]

Appl. Phys. B (1)

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2-a new old laser crystal,” Appl. Phys. B 97, 327–338 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium (III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

J. Appl. Phys. (1)

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

J. Chem. Phys. (8)

J. Sierro, “ESR detection of the hydrolysis of solid CaF2,” J. Chem. Phys. 34, 2183–2184 (1961).
[CrossRef]

D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 2897–2907 (1977).
[CrossRef]

M. B. Seelbinder and J. C. Wright, “Identification of higher order clusters in charge compensated materials using three-body energy transfer,” J. Chem. Phys. 75, 5070–5079 (1981).
[CrossRef]

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33, 1275–1276 (1960).
[CrossRef]

L. van Pieterson, R. P. A. Dullens, P. S. Peijzel, and A. Meijerink, “Site-selective laser spectroscopy of 4fn−4fn−15d transitions in CaF2:Pr3+ with F−, D−, H−, Li+, or Na+ charge compensation,” J. Chem. Phys. 115, 9393–9400 (2001).
[CrossRef]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

W. B. Smith and R. C. Powell, “Energy transfer in CaWO4:Sm3+,” J. Chem. Phys. 76, 854–859 (1982).
[CrossRef]

J. Lum. (5)

L. A. Diaz-Torres, O. Barbosa-Garcia, C. W. Struck, and R. A. McFarlane, “Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations,” J. Lum. 78, 69–86 (1998).
[CrossRef]

A. I. Burshtein, “The influence of the migration mechanism of approaching particles on the energy transfer between them,” J. Lum. 21, 317–321 (1980).
[CrossRef]

J. Chrysochoos, P. W. M. Jacobs, and M. J. Stillman, “Laser induced emission spectra of Pr3+ in CaF2 at low temperatures,” J. Lum. 28, 177–190 (1983).
[CrossRef]

G. D. Jones and R. J. Reeves, “Na+, Li+ and cubic centres in rare-earth-doped CaF2 and SrF2,” J. Lum. 87–89, 1108–1111 (2000).
[CrossRef]

R. B. Barthem, R. Buisson, and J. C. Vial, “Coexistence of two excitation transfer mechanisms in LiYF4:Pr,” J. Lum. 38, 190–192 (1987).
[CrossRef]

J. Lumin. (1)

T. Boonyarith, J. P. D. Martin, B. Luo, and N. B. Manson, “Zeeman measurements of Pr3+ centres in CaO and CaF2,” J. Lumin. 51, 149–156 (1992).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Hormadaly and R. Reisfeld, “Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses,” J. Non-Cryst. Solids 30, 337–348 (1979).
[CrossRef]

J. Opt. Soc. Am. B (2)

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[CrossRef]

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, and R. Moncorgé, “Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters,” J. Opt. Soc. Am. B 28, 1760–1765 (2011).
[CrossRef]

J. Phys. C (1)

C. Andeen, J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, “Clusters in rare-erath-doped alkaline earth fluorides,” J. Phys. C 14, 3557–3574 (1981).
[CrossRef]

J. Phys. C: Solid State Phys. (2)

J. Kliava, P. Evesque, and J. Duran, “Laser selective excitation and energy transfer in a multisite system: CaF2:Pr3+,” J. Phys. C: Solid State Phys. 11, 3357–3368 (1978).
[CrossRef]

K. H. Petit, P. Evesque, and J. Duran, “Dimers and clusters in CaF2:Pr3+. Laser selective excitation and time-resolved spectroscopy,” J. Phys. C: Solid State Phys. 14, 5081–5090 (1981).
[CrossRef]

J. Solid State Chem. (1)

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51, 159–169 (1984).
[CrossRef]

Opt. Comm. (1)

C. Labbé, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Comm. 209, 193–199 (2002).
[CrossRef]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[CrossRef]

Opt. Express (1)

B. Xu, P. Camy, J. L. Doualan, Z. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19, 1191–1197 (2011).
[CrossRef]

Opt. Lett. (3)

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 CW lasers: efficient laser operation at 522.6 nm; 545.9 nm; 607.2 nm and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

S. Ricaud, F. Druon, D. N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect,” Opt. Lett. 36, 1602–1604 (2011).
[CrossRef]

Opt. Mater. (1)

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, and R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Opt. Spectrosc. (1)

V. S. Mironov, “Superexchange mechanism of energy transfer between neighboring lanthanide ions in dielectric crystals,” Opt. Spectrosc. 88, 372–376 (2000).
[CrossRef]

Phys. Rev. (2)

P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–13 (1959).
[CrossRef]

J. L. Merz and P. S. Pershan, “Charge conversion of irradiated rare-earth ions in calcium fluoride. I,” Phys. Rev. 162, 217–235 (1967).
[CrossRef]

Phys. Rev. B (8)

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[CrossRef]

S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zakharov, M. Y. Ougrumov, and G. S. Shakurov, “EPR spectra and crystal field of hexamer rare-earth clusters in fluorites,” Phys. Rev. B 72, 014127 (2005).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: From isolated centers to clusters,” Phys. Rev. B 78085131 (2008).
[CrossRef]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Deffect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425–6438 (1982).
[CrossRef]

W. A. Hargreaves, “Energy levels of tetragonally sited Pr3+ ions in calcium fluoride crystals,” Phys. Rev. B 6, 3417–3422 (1972).
[CrossRef]

B. M. Tissue and J. C. Wright, “Site-selective laser spectroscopy of CaF2:Pr3+,R3+ (R3+=Y3+, Gd3+, Nd3+),” Phys. Rev. B 36, 9781–9789 (1987).
[CrossRef]

D. W. Pack, W. J. Manthey, and D. S. McClure, “Ce+:Na+ pairs in CaF2 and SrF2. Absorption and laser-excitation spectroscopy, and the observation of hole burning,” Phys. Rev. B 40, 9930–9944 (1989).
[CrossRef]

V. Lupei and A. Lupei, “Emission dynamics of the F43/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[CrossRef]

Phys. Solid State (1)

V. A. Chernyshev, A. E. Nikiforov, V. P. Volodin, and G. S. Slepukhin, “Electronic structure of Yb3+ impurity centers in fluorites,” Phys. Solid State 52, 1874–1879 (2010).
[CrossRef]

Proc. Phys. Soc. London B (1)

B. Bleaney, P. M. Llewellyn, and D. A. Jones, “Paramagnetic resonance of uranium ions,” Proc. Phys. Soc. London B 69, 858–860 (1956).
[CrossRef]

Solid State Ionics (1)

J. P. Laval, A. Mikou, and B. Frit, “Short-range order in heavily doped CaF2:Ln3+ fluorites a powder neutron diffraction study,” Solid State Ionics 28–30, 1300–1304 (1988).
[CrossRef]

Spectrosc.Lett. (1)

L. Aarts, B. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for solar cells in YF3:Pr3+, Yb3+,” Spectrosc.Lett. 43, 373–381 (2010).
[CrossRef]

Thin Solid Films (1)

T. Balaji, G. Lifante, E. Daran, R. Legros, and G. Lacoste, “Growth by molecular beam epitaxy and characterization of CaF2:Pr3+ planar waveguides,” Thin Solid Films 339, 187–193 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Pr3+P03 emission spectra when exciting at 442 nm. All spectra are normalized to have an integrated intensity equal to one for sake of clarity. (a) 0.25%Pr3+:KY3F10, (b) 0.5%Pr3+-5%Lu3+:CaF2, (c) 0.5%Pr3+-10%Yb3+:CaF2, and (d) 0.5%Pr3+:CaF2. The intensity ratios I2I1 are given with “1” being CaF2:0.5%Pr3+ in all cases and “2” being (a) KY3F10:0.25%Pr3+, (b) CaF2:0.5%Pr3+-5%Lu3+, (c) CaF2:0.5%Pr3+-10%Yb3+respectively.

Fig. 2.
Fig. 2.

Room temperature absorption spectra recorded between 420 and 490 nm for (a) KY3F10:0.25%Pr3+, (b) CaF2:0.5%Pr3+, (c) CaF2:0.5%Pr3+-5%Lu3+, and (d) CaF2:0.5%Pr3+-10%Yb3+.

Fig. 3.
Fig. 3.

Pr3+P03 decay curves under pulsed excitation at 468 nm (H43P13) for (a) CaF2:0.5%Pr3+, (b) KY3F10:0.25%Pr3+, (c) CaF2:0.5%Pr3+-5%Lu3+, and (d) CaF2:0.5%Pr3+-10%Yb3+.

Fig. 4.
Fig. 4.

Low temperature absorption spectra between 450 and 490 nm. The H43P13 and H43P23 are shown for (a) CaF2:0.5%Pr3+-10%Yb3+, (b) CaF2:0.5%Pr3+-Lu3+, and (c) CaF2:0.5%Pr3+. Inset : close up on the H43P03 transition.

Fig. 5.
Fig. 5.

P03 decays in CaF2:0.5%Pr3+-5%Lu3+ at 599 nm and 607 nm under pulsed excitation at 468 nm (H43P13). At longer times (>150μs), the two decays exhibit the same intrinsic lifetime of 80 μs.

Fig. 6.
Fig. 6.

Pr3+ time-resolved spectra in CaF2:0.5%Pr3+-5%Lu3+: (a) long time [200–360 μs], (b) short time [0–7 μs], and CaF2:0.5%Pr3+-10%Yb3+: (c) long time [200 ns–2 μs] and (d) short time [0–40 ns].

Fig. 7.
Fig. 7.

P03 decay in CaF2:0.5%Pr3+-10%Yb3+ under pulsed excitation at 468 nm (H43P13) (black line) and setup transient response to a 6 ns excitation pulse (blue line). Inset: close-up of the first 80 ns.

Tables (2)

Tables Icon

Table 1. Spectroscopic Parameters Used for the Calculations with Eq. (3)a

Tables Icon

Table 2. Emission Intensity Ratios I2/I1 and their Corresponding Luminescent Centers Ratios N2/N1 Corrected for the Pr3+ Concentration

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N*=σabsΦNτ,
IβN*τrad,
N2N1=I2I1β1σabs1τ1τrad2β2σabs2τ2τrad1.
τ=1I00I(t)dt,
Wex=1τ0exp(γ(1RR0)),
R0=R+L2ln(τ0Wex).

Metrics