Abstract

Photonic crystal (PhC) lenses with negative refractive index have attracted intense interest because of their application in optical frequencies. In this paper, two-dimensional PhC lenses with a triangular lattice of cylindrical holes in dielectric material are investigated. Various physical parameters of the lens are introduced, and their effects on the lens response are studied in detail. The effect of the surface termination is investigated by analyzing the power flux within the PhC structure. A new lens formula has been obtained that shows a linear relation between the source distance (distance between the source and the lens) and the image distance (distance between the image and the lens) for any surface termination of the PhC lens. It is observed that the excitation of surface waves does not necessarily pull the image closer to the lens. The effects of the thickness and the lateral width of the lens are also analyzed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  3. S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
    [CrossRef]
  4. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
    [CrossRef]
  5. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
    [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  7. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  8. E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef]
  9. Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
    [CrossRef]
  10. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  11. P. A. Belov and C. R. Simovski, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
    [CrossRef]
  12. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express15439–15448 (2008).
    [CrossRef]
  13. X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Opt. Express 12, 2919–2924 (2004).
    [CrossRef]
  14. R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
    [CrossRef]
  15. X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Phys. Rev. B 71, 085101 (2005).
    [CrossRef]
  16. S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
    [CrossRef]
  17. G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14, 6755–6765 (2006).
    [CrossRef]
  18. S. Foteinopoulou, “Photonic crystals as metamaterials,” Phys. B, doi:10.1016/j.physb.2012.01.092 (to be published).
    [CrossRef]
  19. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
    [CrossRef]
  20. A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, 1995).
  21. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  22. N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
    [CrossRef]
  23. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
    [CrossRef]
  24. R. Moussa, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination,” Phys. Rev. B 74, 115111 (2006).
    [CrossRef]
  25. N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
    [CrossRef]

2009 (1)

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

2008 (1)

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express15439–15448 (2008).
[CrossRef]

2006 (2)

G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14, 6755–6765 (2006).
[CrossRef]

R. Moussa, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination,” Phys. Rev. B 74, 115111 (2006).
[CrossRef]

2005 (6)

P. A. Belov and C. R. Simovski, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
[CrossRef]

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Phys. Rev. B 71, 085101 (2005).
[CrossRef]

S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

2004 (3)

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Opt. Express 12, 2919–2924 (2004).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

2003 (4)

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[CrossRef]

E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

2002 (1)

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

2000 (2)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1994 (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1968 (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Anantha Ramakrishna, S.

S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Bartal, G.

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express15439–15448 (2008).
[CrossRef]

Belov, P. A.

P. A. Belov and C. R. Simovski, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Berenger, J.

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Cubukcu, E.

E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Economou, E.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

Fang, N.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
[CrossRef]

Foteinopoulou, S.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[CrossRef]

S. Foteinopoulou, “Photonic crystals as metamaterials,” Phys. B, doi:10.1016/j.physb.2012.01.092 (to be published).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Guven, K.

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

He, S.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Johnson, S. G.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Jugessur, A. S.

Kafesaki, M.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

Kempa, K.

X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Phys. Rev. B 71, 085101 (2005).
[CrossRef]

X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Opt. Express 12, 2919–2924 (2004).
[CrossRef]

Kirk, A. G.

Koschny, T.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

Koschny, Th.

R. Moussa, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination,” Phys. Rev. B 74, 115111 (2006).
[CrossRef]

Li, Z.-Y.

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

Lin, L.-L.

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

Liu, Y.

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express15439–15448 (2008).
[CrossRef]

Liu, Z.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
[CrossRef]

Luo, C.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Martin-Moreno, L.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Moreno, E.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Moussa, R.

R. Moussa, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination,” Phys. Rev. B 74, 115111 (2006).
[CrossRef]

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[CrossRef]

Ozbay, E.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Qiu, M.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Ren, Z.

Ruan, Z.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Shen, N.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

Simovski, C. R.

P. A. Belov and C. R. Simovski, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

Soukoulis, C. M.

R. Moussa, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination,” Phys. Rev. B 74, 115111 (2006).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[CrossRef]

Soukoulis, M.

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

Sun, G.

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, 1995).

Tuttle, G.

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Veselago, V.

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wang, X.

X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Phys. Rev. B 71, 085101 (2005).
[CrossRef]

X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Opt. Express 12, 2919–2924 (2004).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Xiao, S.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

Yen, T.-J.

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
[CrossRef]

Zhang, Lei

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Zhang, X.

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express15439–15448 (2008).
[CrossRef]

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
[CrossRef]

Appl. Phys. A (1)

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation,” Appl. Phys. A 80, 1315–1325 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (12)

R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

X. Wang and K. Kempa, “Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs,” Phys. Rev. B 71, 085101 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,” Phys. Rev. B 72, 165112 (2005).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003).
[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

P. A. Belov and C. R. Simovski, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

R. Moussa, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: the role of surface termination,” Phys. Rev. B 74, 115111 (2006).
[CrossRef]

N. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

E. Cubukcu, K. Aydin, and E. Ozbay, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Rep. Prog. Phys. (1)

S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Sov. Phys. Usp. (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (3)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House, 1995).

S. Foteinopoulou, “Photonic crystals as metamaterials,” Phys. B, doi:10.1016/j.physb.2012.01.092 (to be published).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Typical structure with r=0.4a, C=0.4a, nx=9 and ny=31. Circles at the left interface and the right interface of the PhC structure are cut in half (C=r=0.4a). The surface termination is denoted by C.

Fig. 2.
Fig. 2.

Photonic band structure of TM bands of a 2D PhC composed of triangular lattice of cylindrical air holes of radius r=0.4a in dielectric with permittivity ϵr=12.96.

Fig. 3.
Fig. 3.

(a) EFCs for the second TM band of the PhC introduced in Fig. 2. (b) Effective phase index at each frequency versus the incident angle for (a). At f=0.3, the EFC is almost circular and the effective phase index is 1.

Fig. 4.
Fig. 4.

FWHM and the (a) intensity of the image and (b) image distance, for different surface terminations. In both figures, nx=9, ny=31, and the source distance is 3a. The smallest FWHM and the highest image intensity are obtained for C=0.12a.

Fig. 5.
Fig. 5.

Time-averaged magnitude of Poynting vector in logarithmic scale for (a) C=0.2a and (b) C=0.12a. In both figures, nx=9, ny=101, and f=0.3. The source is located at y=0 at the left side of the lens, and the image is formed at the right side of the structure. The borders of the lens are shown by black lines.

Fig. 6.
Fig. 6.

Image distance versus the source distance for C=0.1a and C=0.2a. In both figures, nx=9, ny=31, and f=0.3. The image vanishes for source distances larger than 6.5a and 7.5a for C=0.2a and C=0.1a, respectively.

Fig. 7.
Fig. 7.

(a) FWHM and (b) image intensity versus the source distance for two different surface terminations. The image quality decreases as the source moves too close to or too far from the lens.

Fig. 8.
Fig. 8.

FWHM and the image intensity versus ny. The FWHM has a negative average slope and the image intensity has a positive average slope.

Fig. 9.
Fig. 9.

Image side of the lens for different lens thicknesses. nx=6,12,16,32 from left to right. As the thickness of the structure increases, the distortion in the pattern of image increases. C=0.2a is used in all cases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dsrc+dimg=Wslab,
dsrc+dimg=αcWslab,

Metrics