Abstract

We present a theory of light interaction with a magnetic nanostructured material consisting of a periodic array of ferromagnetic nanocylinders magnetized along the symmetry axis. Using a multiple scattering approach, we calculated the amplitudes of diffracted waves in terms of multipole expansion coefficients and used the developed formalism to describe the experimentally observed enhancement of the magneto-optical effects in magnetic nanostructures. The analysis provides a physical interpretation of the enhancement in terms of interference between the resonant and nonresonant scattering processes. The resonant scattering is caused by excitation of dipole surface-plasmon eigenmodes; the nonresonant one is associated with the monopole modes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
    [CrossRef]
  4. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60(11), 40–46 (2007).
    [CrossRef]
  5. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007).
    [CrossRef]
  6. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
    [CrossRef]
  7. M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
    [CrossRef]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  10. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402(1902).
  11. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
    [CrossRef]
  12. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
    [CrossRef]
  13. V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [CrossRef]
  14. M. H. Cho, Y. Lu, J. Y. Rhee, and Y. P. Lee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 16825–16839 (2008).
    [CrossRef]
  15. H. Xu and B. S. Ham, “Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings,” Opt. Express 16, 21375–21382 (2008).
    [CrossRef]
  16. V. Twersky, “On a multiple scattering theory of the finite grating and the wood anomalies,” J. Appl. Phys. 23, 1099–1118(1952).
    [CrossRef]
  17. X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
    [CrossRef]
  18. A. A. Zharov and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
    [CrossRef]
  19. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [CrossRef]
  20. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Mir, 1981).
  21. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, 1971).
  22. V. Twersky, “Elementary function representations of Schlömilch series,” Arch. Ration. Mech. Anal. 8, 323–332 (1961).
    [CrossRef]
  23. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]

2011 (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

2010 (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

2009 (1)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

2008 (3)

2007 (5)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[CrossRef]

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60(11), 40–46 (2007).
[CrossRef]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

A. A. Zharov and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1993 (1)

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[CrossRef]

1985 (1)

1961 (2)

V. Twersky, “Elementary function representations of Schlömilch series,” Arch. Ration. Mech. Anal. 8, 323–332 (1961).
[CrossRef]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

1952 (1)

V. Twersky, “On a multiple scattering theory of the finite grating and the wood anomalies,” J. Appl. Phys. 23, 1099–1118(1952).
[CrossRef]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402(1902).

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Alexander, R. W.

Armelles, G.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Mir, 1981).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Mir, 1981).

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Belotelov, V. I.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007).
[CrossRef]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Cebollada, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Cho, M. H.

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008).
[CrossRef]

Ctistis, G.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Fumagalli, P.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Garcia-Martin, J.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Giersig, M.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, 1971).

Gutek, J.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Ham, B. S.

Harmon, B. N.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Kneipp, K.

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60(11), 40–46 (2007).
[CrossRef]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Kurin, V. V.

A. A. Zharov and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

Lee, Y. P.

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Long, L. L.

Lu, Y.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Ordal, M. A.

Papaioannou, E.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Patoka, P.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Rhee, J. Y.

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, 1971).

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Twersky, V.

V. Twersky, “Elementary function representations of Schlömilch series,” Arch. Ration. Mech. Anal. 8, 323–332 (1961).
[CrossRef]

V. Twersky, “On a multiple scattering theory of the finite grating and the wood anomalies,” J. Appl. Phys. 23, 1099–1118(1952).
[CrossRef]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Wang, X. D.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[CrossRef]

Ward, C. A.

Weber, R. R. E.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402(1902).

Wu, H. K. Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Xu, H.

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008).
[CrossRef]

Yu, Q. L.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[CrossRef]

Zhang, X. G.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[CrossRef]

Zharov, A. A.

A. A. Zharov and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

Zvezdin, A.

V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett (1)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett 93, 181108 (2008).
[CrossRef]

Arch. Ration. Mech. Anal. (1)

V. Twersky, “Elementary function representations of Schlömilch series,” Arch. Ration. Mech. Anal. 8, 323–332 (1961).
[CrossRef]

J. Appl. Phys. (2)

A. A. Zharov and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

V. Twersky, “On a multiple scattering theory of the finite grating and the wood anomalies,” J. Appl. Phys. 23, 1099–1118(1952).
[CrossRef]

Nano Lett. (1)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[CrossRef]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[CrossRef]

Nat. Photon. (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photon. 4, 107–111 (2010).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (2)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402(1902).

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (2)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Second harmonic generation from arrays of subwavelength cylinders,” Phys. Rev. B 76, 085311 (2007).
[CrossRef]

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electro-magnetic waves,” Phys. Rev. B 47, 4161–4167 (1993).
[CrossRef]

Phys. Rev. Lett. (2)

V. I. Belotelov, L. L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Phys. Today (1)

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60(11), 40–46 (2007).
[CrossRef]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Yan, H. K. Y. Wu, R. R. E. Weber, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Other (2)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Mir, 1981).

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic view of the one-dimensional array of cylinders of radius a with period L magnetized along the z axis and definition of the coordinate system used. The vector i=kxx0+kyy0 is the component of the wave vector of the incident wave lying in the xy plane, and r0,1 and t0,1 are the same components for the wave vectors of light scattered in n=0,+1 diffraction orders.

Fig. 2.
Fig. 2.

(a) Modulus |Ep| (solid curve) and |Es| (dashed curve) for n=0 diffraction order for an array with period L=510nm and cylinder radius a=25nm. Both |Ep| and |Es| are normalized by the incident field Ei. (b) Kerr angle (solid curve) and ellipticity (dashed curve). The inset shows the same data for L=80nm and a=25nm. All results are presented for a p-polarized incident wave with a wave vector lying in the xz coordinate plane. The dimensionless z component of the wave vector is p=0.6. The calculations are carried out for Co and the material parameters used are ωp=3.2ev, ν=0.1ωp, and g=0.01 [19].

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

ε=1ωp2(ω+iν)ω((ω+iν)2ωB2),η=1ωp2ω2+iων,
g=ωp2ωBω((ω+iν)2ωB2),
Esc=nEnexp(i(γnx+kn,yy+kzz)),
s=[x0×k]/|[x0×k]|,p=[s×k]/|[s×k]|.
tan(2θ)=2Re(ξ)1|ξ|2,
sin(2η)=2Im(ξ)1+|ξ|2,
(EpEs)=|k|(kx2+ky2)ky2+kz2(|k|kykxkzkxkz|k|ky)(HzEz).
(HzEz)=exp(ikzz)mimexp(imφj)(Dj,mHDj,mE)Hm(kρj),
(HzEz)=exp(ikzz)mimexp(imφj)Jm(kρj)×n,ljGn+m,jl(Dl,nHDl,nE),
(HzEz)=exp(ikzz)mimexp(imφj){[(H0E0)exp(ikyLjimχ)+n,ljGn+m,jl(Dl,nHDl,nE)]Jm(kρl)+(Dj,mHDj,mE)Hm(kρj)},
(Hz,Ez)=(h,e)Zm(k0qρ)exp(imφ+ik0pz),
{(q2+(εp2g2εp2))h=igpεp2q2e(q2+η(εp2)2g2ε(εp2)g2)e=igpε(εp2)g2q2h.
εq4+((ε+η)(p2ε)+g2)q2η(g2(p2ε)2)=0.
q1,22=ηp2±gpη,E1,2=iηigp21pη(η1).
(HzEz)=exp(ikzz)mimexp(imϕj){Fj,m1(1E1)Jm(κ1ρj)+Fj,m2(1E2)Jm(κ2ρj)},
{DmE+cmamE(E0exp(imχ)+nGn+mDnE)=bmH{DmH+cm(H0exp(imχ)+nGn+mDnH)}DmH+cmamH(H0exp(imχ)+nGn+mDnH)=bmE{DmE+cm(E0exp(imχ)+nGn+mDnE)}.
amE,H=ifmJ(u0)ζj=1,2EjE,HRm,jE,HifmH(u0)ζj=1,2EjE,HRjE,H,
bmE,H=mpζj=1,2EjE,HRm,jH,EifmH(u0)ζj=1,2Ej(H,E)Rm,jH,E,
cm=Jm(u0)Hm(u0),u0=ka,
Rm,jE,H=iαjH,EfmJ(uj)+mβjH,E,
fmJ(uj)=ujJm(uj)Jm(uj),fmH(u0)=ujHm(u0)Hm(u0),
ζ=(1p2)(εp2)(εp2)2g2,
EjE,H=1E2E1{(1)jE2E1(1)jEj,
αjE,H={(ε(εp2)g2)Ej+igpεp2igpEj,βjE,H={gpEj(εp2)ig+p(εp2)Ej.
Gm(k,ky)=j>0Hm(kLj)(exp(ikyLj)+(1)mexp(ikyLj)),
H0(1)(k0ρ)=4id2k(2π)2exp(ikρ)k02k2.
1k0(x±iy)Zm(k0ρ)exp(imφ)=Zm±1(k0ρ)exp(i(m±1)φ).
(Hz,nEz,n)=2Lγnmexp(imφn)(DmHDmE),
E=2|k|L(|k|2kz2)m(1)m(DmEp+DmHs).
ξp=EsEp=D0HDyHD0EDyE.
D0E=iπ4(1p2)(ε1)u2,DyE=iπp24ε1ε+1u2,D0H=π32p(1p2)gu4,DyH=(1+i)πgp3(ε+1)(εp2)2.

Metrics