Abstract

The rigorous analytical approach for the calculation of the spontaneous decay rate for a quantum emitter located in a cylindrical cavity of arbitrary diameter and length is developed. The approach is based on the dyadic Green’s function of the Helmholtz equation, which is obtained by introducing the fictitious surface current sheets at both ends of the nanocavity. The cases when an emitter is located on the cavity axis and when the cavity length exceeds essentially its diameter are considered in further detail. The general theory is illustrated by the calculations for the system, which models a quantum dot embedded in a GaAs nanowire.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Purcell effect for finite-length metal-coated and metal nanowires

Konstantin V. Filonenko, Morten Willatzen, and Vladimir G. Bordo
J. Opt. Soc. Am. B 31(8) 2002-2011 (2014)

Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach

Yangxin Ou, David Pardo, and Yuntian Chen
Opt. Express 23(23) 30259-30269 (2015)

Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire

Morteza Aramesh, Jiri Cervenka, Ann Roberts, Amir Djalalian-Assl, Ranjith Rajasekharan, Jinghua Fang, Kostya Ostrikov, and Steven Prawer
Opt. Express 22(13) 15530-15541 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (103)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription