Abstract

Nonlinear third order optical susceptibilities of metal/dielectric composites containing gold nanoparticles were investigated numerically around the plasmon resonance using the degenerate electron gas model. Influence of the nanoparticle size and intensity of the incident light in the real and imaginary part of the susceptibility, local field factor, absorption spectra, and dispersion curves was analyzed. Results are in agreement with the available data in the literature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
    [CrossRef]
  2. D. Rativa, R. E. de Araujo, and A. S. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008).
    [CrossRef]
  3. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
    [CrossRef]
  4. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003).
    [CrossRef]
  5. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
    [CrossRef]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  7. L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
    [CrossRef]
  8. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
    [CrossRef]
  9. D. D. Smith, George Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).
    [CrossRef]
  10. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
    [CrossRef]
  11. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
    [CrossRef]
  12. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
    [CrossRef]
  13. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
    [CrossRef]
  14. S. G. Rautian, “Nonlinear saturation spectroscopy of the degenerate electron gas in spherical metallic particles,” JETP 85, 451 (1997).
    [CrossRef]
  15. V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
    [CrossRef]
  16. A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  19. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [CrossRef]
  20. L. Gao and Z. Li, “Third-order nonlinear optical response of metal dielectric composites,” J. Appl. Phys. 87, 1620–1625 (2000).
    [CrossRef]
  21. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
    [CrossRef]
  22. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, “Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales,” Opt. Lett. 23, 388–390 (1998).
    [CrossRef]
  23. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third- order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21, 640–644 (2004).
    [CrossRef]
  24. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
    [CrossRef]
  25. H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
    [CrossRef]
  26. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
    [CrossRef]
  27. K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
    [CrossRef]
  28. K. Puech and W. J. Blau, “Ultrafast relaxation dynamics of the optical nonlineariy in nanometric gold particles,” J. Nanopart. Res. 3, 13–21 (2001).
    [CrossRef]
  29. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
    [CrossRef]
  30. Y. Takeda, O. A. Plaksin, and N. Kishimoto, “Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass,” Opt. Express 15, 6010–6018 (2007).
    [CrossRef]
  31. R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
    [CrossRef]

2011 (1)

A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
[CrossRef]

2008 (3)

L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

D. Rativa, R. E. de Araujo, and A. S. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008).
[CrossRef]

2007 (2)

Y. Takeda, O. A. Plaksin, and N. Kishimoto, “Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass,” Opt. Express 15, 6010–6018 (2007).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[CrossRef]

2006 (4)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
[CrossRef]

2005 (1)

2004 (3)

R. del Coso and J. Solis, “Relation between nonlinear refractive index and third- order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21, 640–644 (2004).
[CrossRef]

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003).
[CrossRef]

2002 (1)

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

2001 (1)

K. Puech and W. J. Blau, “Ultrafast relaxation dynamics of the optical nonlineariy in nanometric gold particles,” J. Nanopart. Res. 3, 13–21 (2001).
[CrossRef]

2000 (2)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[CrossRef]

L. Gao and Z. Li, “Third-order nonlinear optical response of metal dielectric composites,” J. Appl. Phys. 87, 1620–1625 (2000).
[CrossRef]

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

1998 (1)

1997 (2)

1995 (1)

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

1993 (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
[CrossRef]

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

1986 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alencar, M. A. R. C.

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

Baba, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

Blau, W.

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

Blau, W. J.

K. Puech and W. J. Blau, “Ultrafast relaxation dynamics of the optical nonlineariy in nanometric gold particles,” J. Nanopart. Res. 3, 13–21 (2001).
[CrossRef]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
[CrossRef]

Boyd, R. W.

Buin, A. K.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
[CrossRef]

Chen, Z. H.

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

Cheng, B. L.

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

Cheong, B.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Cho, K. M.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Cravetchi, I.

da Silva, E. C.

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

de Araujo, R. E.

de Araújo, C. B.

L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
[CrossRef]

del Coso, R.

Drachev, V. P.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
[CrossRef]

Du, C.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Duff, D.

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Falcão-Filho, E. L.

Fischer, George

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
[CrossRef]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Fu, J. S.

Galembeck, A.

L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

Gao, L.

L. Gao and Z. Li, “Third-order nonlinear optical response of metal dielectric composites,” J. Appl. Phys. 87, 1620–1625 (2000).
[CrossRef]

Gao, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Gomes, A. S.

Gómez, L. A.

L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Govyadinov, A. A.

A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
[CrossRef]

Graener, H.

Gregory, D. A.

Guan, D. Y.

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
[CrossRef]

Henari, F.

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

Hickmann, J. M.

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Jeong, J. H.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jun, H. S.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kim, D. S.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Kim, I. H.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Kim, W. M.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Kishimoto, N.

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
[CrossRef]

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Kuroda, H.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

Lange, J.

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Lee, K. S.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Lee, T. S.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Li, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Li, Z.

L. Gao and Z. Li, “Third-order nonlinear optical response of metal dielectric composites,” J. Appl. Phys. 87, 1620–1625 (2000).
[CrossRef]

Liao, H. B.

Link, S.

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

Liu, S.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
[CrossRef]

Lu, G. W.

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

Markel, V. A.

A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
[CrossRef]

Meneghetti, M. R.

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

Nakotte, H.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
[CrossRef]

Oliveira, M. M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Panasyuk, G. Y.

A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
[CrossRef]

Plaksin, O. A.

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
[CrossRef]

Podlipensky, A.

Puech, K.

K. Puech and W. J. Blau, “Ultrafast relaxation dynamics of the optical nonlineariy in nanometric gold particles,” J. Nanopart. Res. 3, 13–21 (2001).
[CrossRef]

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

Qu, S.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Rativa, D.

Rautian, S. G.

S. G. Rautian, “Nonlinear saturation spectroscopy of the degenerate electron gas in spherical metallic particles,” JETP 85, 451 (1997).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schmid, G.

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

Schotland, J. C.

A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
[CrossRef]

Seifert, G.

Shalaev, V. M.

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
[CrossRef]

Shen, H.

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

Silva, A. M. B.

L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
[CrossRef]

Smith, D. D.

Solis, J.

Song, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Souza, R. F.

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

Suzuki, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

Takeda, Y.

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[CrossRef]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Wang, H.

Wang, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Wong, G. K. L.

Wong, K. S.

Xiao, R. F.

Yang, G. Z.

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

Yoon, S. H.

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Zarbin, A. J. G.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhu, D.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Appl. Phys. B (1)

L. A. Gómez, C. B. de Araújo, A. M. B. Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal response,” Appl. Phys. Lett. 92, 201902 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Europhys. Lett. (1)

K. Puech, F. Henari, W. Blau, D. Duff, and G. Schmid, “Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles,” Europhys. Lett. 32, 119–124 (1995).
[CrossRef]

Int. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[CrossRef]

J. Appl. Phys. (1)

L. Gao and Z. Li, “Third-order nonlinear optical response of metal dielectric composites,” J. Appl. Phys. 87, 1620–1625 (2000).
[CrossRef]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

J. Nanopart. Res. (1)

K. Puech and W. J. Blau, “Ultrafast relaxation dynamics of the optical nonlineariy in nanometric gold particles,” J. Nanopart. Res. 3, 13–21 (2001).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[CrossRef]

J. Phys. D: Appl. Phys. (2)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[CrossRef]

H. Shen, B. L. Cheng, G. W. Lu, D. Y. Guan, Z. H. Chen, and G. Z. Yang, “Picosecond nonlinear optical responses of Au/PVP composite films,” J. Phys. D: Appl. Phys. 39, 233–236 (2006).
[CrossRef]

JETP (1)

S. G. Rautian, “Nonlinear saturation spectroscopy of the degenerate electron gas in spherical metallic particles,” JETP 85, 451 (1997).
[CrossRef]

Nano Lett. (1)

V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4, 1535–1539 (2004).
[CrossRef]

Nature Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nature Phys. 2, 44–47 (2006).
[CrossRef]

Opt. Commun. (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
[CrossRef]

Phys. Rev. B (3)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles,” Phys. Rev. B 84, 155461 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi A (1)

H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi A 203, 1211–1216 (2006).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Dielectric function of gold. Real part (open squares) and imaginary part (open circles) from Johnson and Christy. Solid lines are fitted results using Eqs. (1)–(3) and the parameters given in Table 1.

Fig. 2.
Fig. 2.

Absorption coefficient of a composite containing gold NPs. Intensity effects are not considered in the gold dielectric function.

Fig. 3.
Fig. 3.

Dependence of χ ( 3 ) / α with the NPs’ size at plasmon resonance in the picosecond regime. Open squares from [24], filled circle from [25], filled triangle from [26], and the solid line from the theoretical approach using the degenerate electron gas model.

Fig. 4.
Fig. 4.

Spectral dependence of the local field factor at different intensities.

Fig. 5.
Fig. 5.

Intensity dependence of the local field factor for different particle radii at λ = 532 nm .

Fig. 6.
Fig. 6.

NL third order susceptibility of gold-doped glasses. (a) Real part, (b) imaginary part, and (c) absolute value. Intensities: (—) 1 MW / cm 2 , (-- -- --) 200 MW / cm 2 , (·····) 400 MW / cm 2 , and (·−·−) 600 MW / cm 2 .

Fig. 7.
Fig. 7.

Dependence of χ ( 3 ) / α and χ ( 3 ) with the laser intensity for gold-doped glasses. Real part (solid line), imaginary part (dashed line), and absolute value (dotted line).

Tables (1)

Tables Icon

Table 1. Parameters in Eqs. (1)–(3) from [19], to Reproduce the Data of Johnson and Christy [17] between 300–1000 nm

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε Drude ( ω ) + i = 1 2 G i ( ω ) ,
ε Drude ( ω ) = ε ω p 2 ( ω 2 + i Γ ω )
G i ( ω ) = C i [ e i ϕ i ( ω i ω i Γ i ) μ i + e i ϕ i ( ω i + ω + i Γ i ) μ i ] .
Γ = Γ 0 + A v F R ,
ε NP ( ω , R ) = ε ( ω ) + i A ω p 2 v F ω 3 R .
ε NP ( ω , R , I 0 ) = ε NP ( ω , R ) + 12 π χ NP ( 3 ) | f ( ω , R , I 0 ) | 2 I 0
f ( ω , R , I 0 ) = 3 ε h ε NP ( ω , R , I 0 ) + 2 ε h ,
χ NP ( 3 ) = 2 15 ( e 2 n m ω 2 ) ( e R ω ) 2 Γ 2 Γ 1 { F 3 i [ 2 Γ 2 ω F 3 + ( ω 2 Γ 2 ) 2 ( v F R ω ) 5 g 3 ] } ,
χ eff ( 3 ) = p f 2 | f | 2 χ NP ( 3 ) + χ h ( 3 ) ,
α = α 0 1 + I I sat ,
α 0 = 18 π p λ ε h 3 / 2 ε NP ( ε NP + 2 ε h ) 2 + ε NP 2 ,
A | f ( ω , R , I 0 ) | 6 + B | f ( ω , R , I 0 ) | 4 + C | f ( ω , R , I 0 ) | 2 + D = 0
A = c 2 + d 2 , B = 2 ( a c + b d ) , C = a 2 + b 2 , D = 9 ε h 2 ,
a = Re ( ε NP ( ω , R , I 0 ) ) + 2 ε h , b = Im ( ε NP ( ω , R , I 0 ) ) , c = 12 π I 0 Re ( χ NP ( 3 ) ) , d = 12 π I 0 Im ( χ NP ( 3 ) ) .

Metrics