Abstract

Faraday isolators play a key role in the operation of large-scale gravitational-wave detectors. Second-generation gravitational-wave interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo will use high-average-power cw lasers (up to 200 W) requiring specially designed Faraday isolators that are immune to the effects resulting from the laser beam absorption–degraded isolation ratio, thermal lensing, and thermally induced beam steering. In this paper, we present a comprehensive study of Faraday isolators designed specifically for high-performance operation in high-power gravitational-wave interferometers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. LIGO Science Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys.72, 076901 (2009).
    [CrossRef]
  2. Virgo Collaboration, “Status of the Virgo project,” Class. Quantum Grav.28, 144002 (2011).
    [CrossRef]
  3. H. Grote (for the LIGO Scientific Collaboration), “The GEO 600 status,” Class. Quantum Grav.27, 084003 (2010).
    [CrossRef]
  4. TAMA Collaboration, “Current status of TAMA,” Class. Quantum Grav.19, 1409–1419 (2002).
    [CrossRef]
  5. G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
    [CrossRef]
  6. LCGT Collaboration, “Status of LCGT,” Class. Quantum Grav.27, 084004 (2010).
    [CrossRef]
  7. D. H. Reitze, “Faraday isolator specifications for advanced LIGO,” LIGO-T050226-00-D (2006).
  8. E. A. Khazanov, N. F. Andreev, A. A. Babin, A. Kiselev, O. V. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
    [CrossRef]
  9. G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
    [CrossRef]
  10. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
    [CrossRef]
  11. D. Coyne, LIGO vacuum compatible materials list, LIGO-E960050-B-E (Laser Interferometer Gravitational Wave Observatory, 2004).
  12. D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
    [CrossRef]
  13. L. Williams and V. Quetschke, aLIGO Faraday rotator magnet assembly hazard analysis, E070201-00-D LIGO-E1000110-v1 (2010).
  14. Bao-Min Ma and K. S. V. L. Narasimhan, “Temperature dependence of magnetic properties of Nd-Fe-B magnets,” J. Magn. Magn. Mater. 54–57, 559–562 (1986).
    [CrossRef]
  15. N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
    [CrossRef]
  16. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  17. E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef]
  18. I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009).
    [CrossRef]
  19. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13, 5983–5987 (2005).
    [CrossRef]
  20. M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
    [CrossRef]
  21. G. Mueller, S. Stepuk, and V. Quetschke, Analysis of stray magnetic fields from the Advanced LIGO Faraday Isolator, LIGO-T060025-00-D (2006).
  22. LIGO Collaboration, “Seismic isolation requirements for advanced LIGO,” Class. Quantum Grav.19, 1591–1597 (2002).
    [CrossRef]
  23. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  24. M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).
  25. Virgo Collaboration, “In-vacuum Faraday isolation remote tuning,” Appl. Opt.49, 4780–4790 (2010).
    [CrossRef]
  26. Virgo Collaboration, “In-vacuum optical isolation changes by heating in a Faraday isolator,” Appl. Opt.47, 5853–5861 (2008).
    [CrossRef]

2010 (1)

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

2009 (1)

2007 (1)

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

2005 (1)

2004 (1)

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

2002 (2)

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef]

2000 (1)

1999 (2)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

1998 (1)

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

1992 (1)

1986 (1)

Bao-Min Ma and K. S. V. L. Narasimhan, “Temperature dependence of magnetic properties of Nd-Fe-B magnets,” J. Magn. Magn. Mater. 54–57, 559–562 (1986).
[CrossRef]

Amin, R.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Andreev, N. F.

Arain, M. A.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

Aung, Y. L.

Babin, A. A.

Barnes, N. P.

Coyne, D.

D. Coyne, LIGO vacuum compatible materials list, LIGO-E960050-B-E (Laser Interferometer Gravitational Wave Observatory, 2004).

Grote, H.

H. Grote (for the LIGO Scientific Collaboration), “The GEO 600 status,” Class. Quantum Grav.27, 084003 (2010).
[CrossRef]

Guagliardo, D.

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Harry, G. M.

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

Hough, J.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Ikesue, A.

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Khazanov, E. A.

I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13, 5983–5987 (2005).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. A. Babin, A. Kiselev, O. V. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Killbourn, S.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Kiselev, A.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Lucianetti, A.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

Lundock, R.

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Ma, Bao-Min

Bao-Min Ma and K. S. V. L. Narasimhan, “Temperature dependence of magnetic properties of Nd-Fe-B magnets,” J. Magn. Magn. Mater. 54–57, 559–562 (1986).
[CrossRef]

Mal’shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Martin, R.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

McFeron, Donavan

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Mehl, O.

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

G. Mueller, S. Stepuk, and V. Quetschke, Analysis of stray magnetic fields from the Advanced LIGO Faraday Isolator, LIGO-T060025-00-D (2006).

Mukhin, I. B.

Narasimhan, K. S. V. L.

Bao-Min Ma and K. S. V. L. Narasimhan, “Temperature dependence of magnetic properties of Nd-Fe-B magnets,” J. Magn. Magn. Mater. 54–57, 559–562 (1986).
[CrossRef]

Palashov, O. V.

I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13, 5983–5987 (2005).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. A. Babin, A. Kiselev, O. V. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

Petway, L. P.

Plissi, M. V.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef]

Quetschke, V.

G. Mueller, S. Stepuk, and V. Quetschke, Analysis of stray magnetic fields from the Advanced LIGO Faraday Isolator, LIGO-T060025-00-D (2006).

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

L. Williams and V. Quetschke, aLIGO Faraday rotator magnet assembly hazard analysis, E070201-00-D LIGO-E1000110-v1 (2010).

Reitze, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. A. Babin, A. Kiselev, O. V. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

D. H. Reitze, “Faraday isolator specifications for advanced LIGO,” LIGO-T050226-00-D (2006).

Robertson, N. A.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Rowan, S.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Skeldon, K. D.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Stepuk, S.

G. Mueller, S. Stepuk, and V. Quetschke, Analysis of stray magnetic fields from the Advanced LIGO Faraday Isolator, LIGO-T060025-00-D (2006).

Strain, K. A.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

Torrie, C. I.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Twyford, S. M.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Voytovich, A. V.

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

Ward, H.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Williams, L.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

L. Williams and V. Quetschke, aLIGO Faraday rotator magnet assembly hazard analysis, E070201-00-D LIGO-E1000110-v1 (2010).

Wu, W.

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Zheleznov, D. S.

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

Appl. Opt. (1)

Class. Quantum Grav. (2)

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

G. Mueller, R. Amin, D. Guagliardo, Donavan McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optics components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

J. Magn. Magn. Mater. (1)

Bao-Min Ma and K. S. V. L. Narasimhan, “Temperature dependence of magnetic properties of Nd-Fe-B magnets,” J. Magn. Magn. Mater. 54–57, 559–562 (1986).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Quantum Electron. (1)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Other (13)

G. Mueller, S. Stepuk, and V. Quetschke, Analysis of stray magnetic fields from the Advanced LIGO Faraday Isolator, LIGO-T060025-00-D (2006).

LIGO Collaboration, “Seismic isolation requirements for advanced LIGO,” Class. Quantum Grav.19, 1591–1597 (2002).
[CrossRef]

L. Williams and V. Quetschke, aLIGO Faraday rotator magnet assembly hazard analysis, E070201-00-D LIGO-E1000110-v1 (2010).

D. Coyne, LIGO vacuum compatible materials list, LIGO-E960050-B-E (Laser Interferometer Gravitational Wave Observatory, 2004).

LCGT Collaboration, “Status of LCGT,” Class. Quantum Grav.27, 084004 (2010).
[CrossRef]

D. H. Reitze, “Faraday isolator specifications for advanced LIGO,” LIGO-T050226-00-D (2006).

LIGO Science Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys.72, 076901 (2009).
[CrossRef]

Virgo Collaboration, “Status of the Virgo project,” Class. Quantum Grav.28, 144002 (2011).
[CrossRef]

H. Grote (for the LIGO Scientific Collaboration), “The GEO 600 status,” Class. Quantum Grav.27, 084003 (2010).
[CrossRef]

TAMA Collaboration, “Current status of TAMA,” Class. Quantum Grav.19, 1409–1419 (2002).
[CrossRef]

M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. H. Reitze, D. B. Tanner, L. Williams, and W. Wu, Advanced LIGO input optics subsystem preliminary design document, LIGO-T060269-02-D (2007).

Virgo Collaboration, “In-vacuum Faraday isolation remote tuning,” Appl. Opt.49, 4780–4790 (2010).
[CrossRef]

Virgo Collaboration, “In-vacuum optical isolation changes by heating in a Faraday isolator,” Appl. Opt.47, 5853–5861 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Faraday rotator magnet system for the (a) LIGO and (b) Virgo VPFI.

Fig. 2.
Fig. 2.

(a) Individual magnetic ring sectors, showing radial sectors and (b) magnetic system during assembly. The solid aluminum ring located at the center prevents repulsive forces from disassembling the magnetic sectors in the axial direction. The aluminum flat annulus is a shim to allow better outgassing during the vacuum bakeout.

Fig. 3.
Fig. 3.

Comparison of the longitudinal magnetic field of a VPFI magnetic disk before (black dots) and after (red dots) baking in a vacuum for 48 h at a temperature of 60 °C. The fields are identical, demonstrating that vacuum baking under these conditions is not deleterious to the magnetic field.

Fig. 4.
Fig. 4.

Axial distribution of the magnetic field component B z in the Advanced LIGO VPFI. The graph compares the fields for two different VPFIs, one in operation at the LLO (circles) and one at the LHO (triangles).

Fig. 5.
Fig. 5.

Axial distribution of the magnetic field B z in the Virgo VPFI. The horizontal axis shows axial distance from the center of magnets.

Fig. 6.
Fig. 6.

(a) Axial component of the axial magnetic field of the LIGO VPFI, measured from the center of the rotator, along with fits to three models, discussed in the text. Inset, expanded view of data and fits at the lower measured field values. (b) First (solid lines) and second (dashed lines) derivatives of the magnetic field computed using the fits. The horizontal dashed line shows the 10 6 level. [This value is slightly lower than the requirement for the two derivatives given by Eqs. (2) and (3)]. The vertical dashed line at 15 cm shows that for larger distances, the field derivatives are below the critical values for noise coupling to the suspended mirrors.

Fig. 7.
Fig. 7.

Experimentally measured depolarization (symbols) and theoretical predictions (lines) for the dependence of the depolarization on laser power for the Virgo VPFI. The squares and circles are the measured depolarizations for each crystal in the VPFI. The triangles display the measurement for both crystals in series. Good agreement with theory is seen.

Fig. 8.
Fig. 8.

TGG holders designed for more efficient heat transfer by conduction: (a) holders for LIGO TGG crystal (left) and quartz/TGG (right), (b) an open TGG holder showing the tapered collet and copper cap, and (c) the Virgo TGG holder design, which uses copper instead of aluminum as the main body. Copper is almost twice as thermally conductive as aluminum.

Fig. 9.
Fig. 9.

Power-dependent optical isolation for VPFI using one TFP and CWP (blue diamonds) and a pair of CWPs (red triangles).

Fig. 10.
Fig. 10.

Isolation ratio degradation as a function of pressure for input laser powers of 104, 50, and 30 W, respectively. At all powers, a substantial reduction in the isolation ratio is observed, with the most severe reduction at 104 W.

Fig. 11.
Fig. 11.

(a) Isolation degradation in vacuum and restoration by adjusting a motorized half-wave plate in situ. Loss of isolation ratio versus time for an FI without thermal lens compensation. Time t = 0 corresponds to the turn on of the laser. The dashed line is a decaying exponential fit with a 74 min time constant. At 130 min, the wave plate is adjusted. (b) Similar plot showing isolation reduction and restoration for an FI incorporating DKDP thermal lens compensation. The improvement at long times is a consequence of controlled overcompensation.

Fig. 12.
Fig. 12.

(a) Change in angle of the rejected FI beam versus time for calcite polarizers from a cold start (no power) to 30 W. (b) Change in angle of the rejected FI beam versus time for TFPs from a cold start (no power) to 30 W.

Fig. 13.
Fig. 13.

Thermal focal power of the FI as a function of incident laser power. The black squares show the focal power for the FI without thermal compensation. The red circles display the measured focal power of the DKDP. The green triangles display the measured focal power for the fully compensated FI.

Fig. 14.
Fig. 14.

Experimental dependence of isolation ratio versus laser power in vacuum (circles) and in air (squares) with half-wave plate readjustment. The solid line shows desired level for Virgo isolation of 40 dB. The third experimental curve (diamonds) gives the FI the best isolation when there is no readjustment of the half-wave plate to compensate for Verdet constant change.

Fig. 15.
Fig. 15.

Measurements of thermal lensing in Virgo TGG crystals using a pump-probe technique. The data points are measurements of two individual TGG crystals. The lines are estimated absorption in the TGG crystals based on a finite element model described in the text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ ( r ) = V ( r ) 0 L MOE B z ( z , r ) d z ,
2 B max < 1.35 · 10 6 ( f 10 Hz ) 3 / 2 ( 3.89 kg M ) Gauss m 2 ,
( B R ) max = 3 · 10 6 Gauss m ( f Hz ) 3 / 2 ( 8.3 · 10 3 kg · m 2 I ) ( μ 0.011 A · m 2 ) ,
I [ dB ] = 10 · log ( γ ) .

Metrics