Abstract

Introducing an intermediate section between two metal–insulator–metal plasmonic waveguides with unequal width considerably enhances the transmission spectra of a direct junction. In this paper, we design various junctions based on analytic optimization to obtain maximum power transfer through a junction. Using advantages of quasi-static approximation for subwavelength devices, a pure analytic expression is derived, which leads to broader bandwidth and higher transmittance at given frequency. We achieve zero reflection from 125 to 25 nm width MIM junctions by inserting transition sections consisting of quarter-wavelength and tapered structures between two waveguides. Our analysis and optimization results are numerically validated by the finite-difference time-domain simulation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
    [CrossRef]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef]
  5. Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28, 2827–2832 (2011).
    [CrossRef]
  6. F. Hu and Z. Zhou, “Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities,” J. Opt. Soc. Am. B 28, 2518–2523 (2011).
    [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, “Plasmonic sub wavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
    [CrossRef]
  8. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [CrossRef]
  9. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  10. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  11. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
    [CrossRef]
  12. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011).
    [CrossRef]
  13. B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010).
    [CrossRef]
  14. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  15. Z. Han and E. Forsberg, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  16. Q. Huang, R. Liang, P. Chen, S. Wang, and Y. Xu, “High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure,” J. Opt. Soc. Am. B 28, 1851–1854 (2011).
    [CrossRef]
  17. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
    [CrossRef]
  18. Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009).
    [CrossRef]
  19. A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express 15, 15280–15286 (2007).
    [CrossRef]
  20. D. S. Citrin, “Subwavelength nanoplasmonic ring resonators,” J. Opt. Soc. Am. B 22, 1763–1769 (2005).
    [CrossRef]
  21. N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008).
    [CrossRef]
  22. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
    [CrossRef]
  23. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009).
    [CrossRef]
  24. C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves,” J. Opt. Soc. Am. B 25, 1387–1392 (2008).
    [CrossRef]
  25. Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal–insulator–metal waveguide coupling,” J. Opt. Soc. Am. B 28, 2712–2717 (2011).
    [CrossRef]
  26. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713 (2010).
    [CrossRef]
  27. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [CrossRef]
  28. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
    [CrossRef]
  29. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008).
    [CrossRef]
  30. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE Photon. J. 3, 220–233 (2011).
    [CrossRef]
  31. S. C. Hagness, A. Taflove, and S. D. Gedney, “Finite-difference time-domain methods,” in Vol. XIII of Handbook of Numerical Analysis, W. H. A. Schilders and E. J. W. ter Maten, eds. (Elsevier-North Holland, 2005), pp. 199–315.
  32. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283(1998).
    [CrossRef]
  33. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  34. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits(Pan Stanford, 2008).
  35. G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  36. R. E. Collin, Foundations for Microwave Engineering (IEEE, 2000).
  37. M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).

2011 (7)

2010 (2)

2009 (4)

2008 (4)

2007 (3)

2006 (2)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

2005 (5)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic sub wavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef]

D. S. Citrin, “Subwavelength nanoplasmonic ring resonators,” J. Opt. Soc. Am. B 22, 1763–1769 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

2000 (1)

1998 (2)

Alù, A.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Aussenegg, F. R.

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Berini, P.

Bloemer, M. J.

Boltasseva, A.

Bozhevolnyi, S. I.

Chang, S. H.

Chen, P.

Chen, Z.

Chiu, T. C.

Citrin, D. S.

Collin, R. E.

R. E. Collin, Foundations for Microwave Engineering (IEEE, 2000).

Cui, Y.

D’Aguanno, G.

Dai, L.

De Ceglia, D.

Dereux, A.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Djurišic, A. B.

Duan, L.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Elazar, J. M.

Fan, S.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fang, N. X.

Forsberg, E.

Z. Han and E. Forsberg, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Fung, K. H.

Gedney, S. D.

S. C. Hagness, A. Taflove, and S. D. Gedney, “Finite-difference time-domain methods,” in Vol. XIII of Handbook of Numerical Analysis, W. H. A. Schilders and E. J. W. ter Maten, eds. (Elsevier-North Holland, 2005), pp. 199–315.

Ginzburg, P.

Gramotnev, D. K.

Hagness, S. C.

S. C. Hagness, A. Taflove, and S. D. Gedney, “Finite-difference time-domain methods,” in Vol. XIII of Handbook of Numerical Analysis, W. H. A. Schilders and E. J. W. ter Maten, eds. (Elsevier-North Holland, 2005), pp. 199–315.

Han, Z.

Z. Han and E. Forsberg, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

He, S.

Holmgaard, T.

Hosseini, A.

Hu, F.

Huang, Q.

Huang, X.

Huang, X. G.

Huang, X.-G.

Jiang, C.

Jin, X.

Jin, X.-P.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Kim, J.

Kocabas, S. E.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Krenn, J. R.

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Leitner, A.

Liang, R.

Lin, X.

Lin, X.-S.

Liu, X.

Liu, Y.

Lu, H.

Mahjoubfar, A.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

Mao, D.

Markey, L.

Massoud, Y.

Mattiucci, N.

Mei, X.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Miller, D. A. B.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008).
[CrossRef]

Moreno, E.

Nejati, H.

Nielsen, R. B.

Orenstein, M.

Pannipitiya, A.

A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE Photon. J. 3, 220–233 (2011).
[CrossRef]

Parker, M. A.

M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).

Pile, D. F. P.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Premaratne, M.

A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE Photon. J. 3, 220–233 (2011).
[CrossRef]

Quinten, M.

Rakic, A. D.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Rodrigo, S. G.

Rukhlenko, I. D.

A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE Photon. J. 3, 220–233 (2011).
[CrossRef]

Shahabadi, M.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Taflove, A.

S. C. Hagness, A. Taflove, and S. D. Gedney, “Finite-difference time-domain methods,” in Vol. XIII of Handbook of Numerical Analysis, W. H. A. Schilders and E. J. W. ter Maten, eds. (Elsevier-North Holland, 2005), pp. 199–315.

Tai, C.-Y.

Talebi, N.

Tang, B.

Tao, J.

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Veronis, G.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Vincenti, M. A.

Volkov, V. S.

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, S.

Xu, J.

Xu, Y.

Yi, J.

Zhang, Q.

Zhou, Z.

Zhu, J.

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron 14, 1462–1472 (2008).
[CrossRef]

IEEE Photon. J. (1)

A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE Photon. J. 3, 220–233 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han and E. Forsberg, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (11)

D. S. Citrin, “Subwavelength nanoplasmonic ring resonators,” J. Opt. Soc. Am. B 22, 1763–1769 (2005).
[CrossRef]

C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves,” J. Opt. Soc. Am. B 25, 1387–1392 (2008).
[CrossRef]

N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008).
[CrossRef]

B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010).
[CrossRef]

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713 (2010).
[CrossRef]

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011).
[CrossRef]

Q. Huang, R. Liang, P. Chen, S. Wang, and Y. Xu, “High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure,” J. Opt. Soc. Am. B 28, 1851–1854 (2011).
[CrossRef]

F. Hu and Z. Zhou, “Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities,” J. Opt. Soc. Am. B 28, 2518–2523 (2011).
[CrossRef]

Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal–insulator–metal waveguide coupling,” J. Opt. Soc. Am. B 28, 2712–2717 (2011).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28, 2827–2832 (2011).
[CrossRef]

X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express (8)

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009).
[CrossRef]

Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009).
[CrossRef]

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express 15, 15280–15286 (2007).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Other (5)

S. C. Hagness, A. Taflove, and S. D. Gedney, “Finite-difference time-domain methods,” in Vol. XIII of Handbook of Numerical Analysis, W. H. A. Schilders and E. J. W. ter Maten, eds. (Elsevier-North Holland, 2005), pp. 199–315.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits(Pan Stanford, 2008).

R. E. Collin, Foundations for Microwave Engineering (IEEE, 2000).

M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic view of an MIM junction between two waveguides with widths of d1 and d2, and the field orientation of the odd TM mode. (b) Equivalent transmission-line circuit of (a).

Fig. 2.
Fig. 2.

Normalized magnitude of electric field of MIM waveguides with (a) different widths at wavelength of 1550 nm, and (b) different wavelengths with fixed width of 100 nm. The fields are normalized to the Ez component.

Fig. 3.
Fig. 3.

Schematic representation of relations between circuit inputs and outputs through (a) scattering matrix, and (b) transfer matrix.

Fig. 4.
Fig. 4.

(a) Schematic view of the MIM junction of Fig. 1(a) matched with cascaded line sections with widths ds1,,ds(N1), and (b) its equivalent transmission line.

Fig. 5.
Fig. 5.

(a) FDTD results of transmission of a single intermediate section between two different plasmonic MIM waveguides, for various L and d, at the wavelength of 1550 nm; (b) transmission spectra of a straight waveguide, 125 nm:25 nm direct junction, and a junction with one quarter-wave intermediate section. Solid curve and circles represent numerical and analytical results, respectively.

Fig. 6.
Fig. 6.

(a) Total reflection spectrum of a single-section quarter-wave transformer; (b) bandwidth characteristic for two-section (solid curve) and three-section (dashed curve) binomial quarter-wave transformer; (c) fractional bandwidth of binomial transformer versus the number of intermediate sections; (d) bandwidth characteristic for two-section (solid curve) and three-section (dashed curve) Chebyshev quarter-wave transformer.

Fig. 7.
Fig. 7.

Transmission spectra of binomial transformer. Solid black (gray) curve and open (filled) circles represent numerical and analytical results for two (three)-section binomial transformers, respectively. Dashed curve corresponds to single-section transformer. Transmission spectra of a straight waveguide and 125 nm:25 nm direct junction are also depicted.

Fig. 8.
Fig. 8.

(a) Transmission spectra of Chebyshev transformer. Solid black (gray) curve and open (filled) circles represent numerical and analytical results for three (two)-section Chebyshev transformers, respectively. Dashed curve corresponds to a single-section transformer. Transmission spectra of a straight waveguide and 125 nm:25 nm direct junction are also depicted; (b) transmission spectra of two-section Chebyshev transformer for different Γm.

Fig. 9.
Fig. 9.

(a) Schematic representation of equivalent circuit for tapered transformer. (b) Bandwidth characteristic for six-section exponential tapered (solid curve) and triangular tapered (dashed curve) quarter-wave transformer.

Fig. 10.
Fig. 10.

Transmission spectra of tapered transformer. Solid square (circle) curve represents simulation results for the six-section triangular (exponential) tapered transformer, respectively. Dashed curve corresponds to single-section transformer. Transmission spectra of a straight waveguide and 125 nm:25 nm direct junction are also depicted.

Tables (2)

Tables Icon

Table 1. Optimal Parameters for Two- and Three-Section Binomial Transformer

Tables Icon

Table 2. Optimal Parameters for Two- and Three-Section Chebyshev Transformer

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

εm(ω)=1Ωp2ω[ωiΓ0]+n=15fnωp2(ωn2ω2)+iωΓn,
tanh(kdd2)=(kmεdkdεm),
Zi=ViIi=EzdiHy=β(di)diωε0εd,i=1,2.
V1(x)=V1+eiβx+V1eiβx,V2(x)=V2+eiβx+V2e+iβx,
[V1V2]=S̲[V1+V2+],
s11=s22=Γ,s12=s21=2Z1Z2Z1+Z2,
[V1+V1]=T̲[V2+V2],T̲=1s21[1s11s22Det(S̲)]=[t11t12t12t11],where:t11=12(Z2Z1+Z1Z2)andt12=12(Z2Z1Z1Z2).
T=T1(L1)Tjun1Ts1(Ls1)Tjun2T2(L2)=T1(L1)[i=1N1Tjun(i)Tsi(Lsi)]T2(L2),
Tsi(Li)=[eiβsiLsi00eiβsiLsi],Tjun(i)=[ti+tititi+],ti±=Zs(i+1)Zsi±ZsiZs(i+1)2.
Γsn=Zs(n+1)ZsnZs(n+1)+Zsn,n=1,,N1.Γ0=Zs1Z1Zs1+Z1,ΓN=Z2Zs(N1)Z2+Zs(N1).
Γ=Γ0+Γ1e2iθ+Γ2e4iθ++ΓNe2iNθ,
T(ω)=4exp(L1Lspp1L2Lspp2)|Z2Z1±Z1Z2|2,
T(ω)=exp(L1Lspp1ls1Lspps1L2Lspp2)|t1+t2+exp(i2βs1Ls1)t1t2|2,
Γtot=|Z2Z1|2Z1Z2|cosθ|,θ=βsLs.
Δff0=24πcos1|2ΓmZ1Z2(Z1Z2)1Γm2|.
Γ=2NZ2Z1Z2+Z1(1+e2iθ)N.
lnZn+1Zn=2NCnNlnZ2Z1,CnN=N!(Nn)!n!,
Δff0=24πcos1|2Γmln(Z2Z1)|.
Γ=12eiNθln(Z2Z1)TN(secθmcosθ)TN(secθm),
Γm=lnZ2Z12TN(secθm).
Δff0=24πθm.
dΓ=12e2iβzddz(lnZZ1)dz.
Γ=120θme2iθddθ(lnZZ1)dθ.
lnZZ1=θθmlnZ2Z1.
Z=Z1exp(θθmlnZ2Z1),
Γ=12eiθmln(Z2Z1)sinθmθm.
ddz(lnZZ1)={4zL2lnZ2Z10zL24L2(Lz)lnZ2Z1L2zL.
Γ=12eiθmln(Z2Z1)(sin(θm/2)θm/2)2.

Metrics