Abstract

In a hot sodium atomic vapor, we report the observation of electromagnetically induced polarization rotation (EIPR) in the 3S1/2-3P1/2-4D3/2 and 3S1/2-3P3/2-4D3/2,5/2 three-level ladder transitions, where a weak probe beam and a strong coupling beam are resonant to the lower and the upper transition, respectively. The EIPR spectra exhibited a unique double-dispersion feature, which was more pronounced for the higher coupling powers. The maximum rotation angle was 18 deg. Optical switch experiment based on EIPR gave a fast response time of less than 100 ns.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Suter, The Physics of Laser-Atom Interactions (Cambridge University, 1997).
  2. I. Novikova, A. B. Matsko, and G. R. Welch, “Large polarization rotation via atomic coherence,” Opt. Lett. 26, 1016–1018 (2001).
    [CrossRef]
  3. D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [CrossRef]
  4. R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes, and C. S. Adams, “Faraday dichroic beam splitter for Raman light using an isotopically pure alkali-metal-vapor cell,” Opt. Lett. 34, 3071–3073 (2009).
    [CrossRef]
  5. P. F. Liao and G. C. Bjorklund, “Polarization rotation induced by resonant two-photon dispersion,” Phys. Rev. Lett. 36, 584–587 (1976).
    [CrossRef]
  6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  7. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef]
  8. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
    [CrossRef]
  9. K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
    [CrossRef]
  10. B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
    [CrossRef]
  11. S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
    [CrossRef]
  12. F. S. Pavone, G. Bianchini, F. S. Cataliotti, T. W. Hänsch, and M. Inguscio, “Birefringence in electromagnetically induced transparency,” Opt. Lett. 22, 736–738 (1997).
    [CrossRef]
  13. S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
    [CrossRef]
  14. T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
    [CrossRef]
  15. S. J. Park, C. Y. Park, and T. H. Yoon, “Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system,” Phys. Rev. A 71, 063819 (2005).
    [CrossRef]
  16. D. Cho, J. M. Kim, and Q. H. Park, “Optical induced Faraday effect using three-level atoms,” Phys. Rev. A 72, 023821 (2005).
    [CrossRef]
  17. K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41, 225503 (2008).
    [CrossRef]
  18. R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815(2009).
    [CrossRef]
  19. P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81, 043838 (2010).
    [CrossRef]
  20. N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
    [CrossRef]
  21. M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  22. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef]
  23. Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
    [CrossRef]
  24. K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
    [CrossRef]
  25. F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
    [CrossRef]
  26. M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
    [CrossRef]
  27. J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
    [CrossRef]
  28. X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
    [CrossRef]
  29. W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
    [CrossRef]

2011 (2)

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

2010 (2)

2009 (2)

R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes, and C. S. Adams, “Faraday dichroic beam splitter for Raman light using an isotopically pure alkali-metal-vapor cell,” Opt. Lett. 34, 3071–3073 (2009).
[CrossRef]

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815(2009).
[CrossRef]

2008 (1)

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41, 225503 (2008).
[CrossRef]

2006 (3)

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

2005 (2)

S. J. Park, C. Y. Park, and T. H. Yoon, “Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system,” Phys. Rev. A 71, 063819 (2005).
[CrossRef]

D. Cho, J. M. Kim, and Q. H. Park, “Optical induced Faraday effect using three-level atoms,” Phys. Rev. A 72, 023821 (2005).
[CrossRef]

2004 (1)

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

2002 (1)

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

2001 (1)

1998 (1)

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

1997 (1)

1995 (3)

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

1991 (2)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

1976 (1)

P. F. Liao and G. C. Bjorklund, “Polarization rotation induced by resonant two-photon dispersion,” Phys. Rev. Lett. 36, 584–587 (1976).
[CrossRef]

1974 (3)

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

1973 (1)

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Abel, R. P.

Adams, C. S.

Bianchini, G.

Biraben, F.

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

Bjorklund, G. C.

P. F. Liao and G. C. Bjorklund, “Polarization rotation induced by resonant two-photon dispersion,” Phys. Rev. Lett. 36, 584–587 (1976).
[CrossRef]

Bloembergen, N.

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Budker, D.

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Cataliotti, F. S.

Cho, D.

D. Cho, J. M. Kim, and Q. H. Park, “Optical induced Faraday effect using three-level atoms,” Phys. Rev. A 72, 023821 (2005).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cognac, B.

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

Drampyan, R.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815(2009).
[CrossRef]

Field, J. E.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Fujisawa, A.

Gaeta, A. L.

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Gawlik, W.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815(2009).
[CrossRef]

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Gornik, W.

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Grynberg, G.

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

Hahn, K. H.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Han, Y.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

Hänsch, T. W.

Harada, K.

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Hayashi, N.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

Hombo, N.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

Hughes, I. G.

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Inguscio, M.

Jin, S.-Z.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

Kaiser, D.

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Kanbashi, T.

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Kido, H.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

Kim, J. M.

D. Cho, J. M. Kim, and Q. H. Park, “Optical induced Faraday effect using three-level atoms,” Phys. Rev. A 72, 023821 (2005).
[CrossRef]

Kimball, K. F.

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Krohn, U.

Lange, W.

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Levenson, M. D.

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

Li, S.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

Li, Y.-Q.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Liao, P. F.

P. F. Liao and G. C. Bjorklund, “Polarization rotation induced by resonant two-photon dispersion,” Phys. Rev. Lett. 36, 584–587 (1976).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

Luther, J.

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Ma, J.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Matsko, A. B.

Mitsunaga, M.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Motomura, K.

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

Natarajan, V.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41, 225503 (2008).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Novikova, I.

Pandey, K.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41, 225503 (2008).
[CrossRef]

Park, C. Y.

S. J. Park, C. Y. Park, and T. H. Yoon, “Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system,” Phys. Rev. A 71, 063819 (2005).
[CrossRef]

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Park, Q. H.

D. Cho, J. M. Kim, and Q. H. Park, “Optical induced Faraday effect using three-level atoms,” Phys. Rev. A 72, 023821 (2005).
[CrossRef]

Park, S. J.

S. J. Park, C. Y. Park, and T. H. Yoon, “Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system,” Phys. Rev. A 71, 063819 (2005).
[CrossRef]

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Pavone, F. S.

Peng, K. C.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Pustelny, S.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815(2009).
[CrossRef]

Radloff, H.-H.

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Rochester, S. M.

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Schulz, H. H.

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

Sheng, J.

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

Siddons, P.

Sugimura, S.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

Suter, D.

D. Suter, The Physics of Laser-Atom Interactions (Cambridge University, 1997).

Takahashi, K.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

Wang, B.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Wang, H.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

Wasan, A.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41, 225503 (2008).
[CrossRef]

Weis, A.

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Welch, G. R.

Wielandy, S.

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Xiao, M.

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

Yang, X.

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Yoon, T. H.

S. J. Park, C. Y. Park, and T. H. Yoon, “Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system,” Phys. Rev. A 71, 063819 (2005).
[CrossRef]

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Appl. Phys. (1)

W. Gornik, D. Kaiser, W. Lange, J. Luther, H.-H. Radloff, and H. H. Schulz, “Lifetime measurements using stepwise excitation by two pulsed dye lasers,” Appl. Phys. 1, 285–286 (1973).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. B 41, 225503 (2008).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (12)

K. Harada, T. Kanbashi, M. Mitsunaga, and K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73, 013807 (2006).
[CrossRef]

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, “Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms,” Phys. Rev. A 74, 033821 (2006).
[CrossRef]

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

S. J. Park, C. Y. Park, and T. H. Yoon, “Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system,” Phys. Rev. A 71, 063819 (2005).
[CrossRef]

D. Cho, J. M. Kim, and Q. H. Park, “Optical induced Faraday effect using three-level atoms,” Phys. Rev. A 72, 023821 (2005).
[CrossRef]

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80, 033815(2009).
[CrossRef]

P. Siddons, C. S. Adams, and I. G. Hughes, “Optical control of Faraday rotation in hot Rb vapor,” Phys. Rev. A 81, 043838 (2010).
[CrossRef]

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

Phys. Rev. Lett. (8)

F. Biraben, B. Cognac, and G. Grynberg, “Experimental evidence of two-photon transition without Doppler broadening,” Phys. Rev. Lett. 32, 643–645 (1974).
[CrossRef]

M. D. Levenson and N. Bloembergen, “Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapor,” Phys. Rev. Lett. 32, 645–648 (1974).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33, 128–131 (1974).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

S. Wielandy and A. L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

P. F. Liao and G. C. Bjorklund, “Polarization rotation induced by resonant two-photon dispersion,” Phys. Rev. Lett. 36, 584–587 (1976).
[CrossRef]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, K. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Other (2)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

D. Suter, The Physics of Laser-Atom Interactions (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental setup. RDL, ring dye laser; SMF, single-mode fiber; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam splitter; NPBS, nonpolarizing beam splitter; BPD, balanced photodetector; (b) Related energy-level schemes for the ladder-type EIPR in sodium vapor.

Fig. 2.
Fig. 2.

Probe transmission spectrum for the D1 line when the coupling beam is present. Ic=250mW.

Fig. 3.
Fig. 3.

(a) Probe transmission spectrum for Ic=250mW. (b)–(d) EIPR spectra for (b) Ic=290mW (rotation angle is shifted by 30 deg), (c) Ic=150mW (15 deg), and (d) Ic=75mW, as a function of probe detuning frequency for the D1 line, F=2 peak.

Fig. 4.
Fig. 4.

Rotation angles of the (a) main peak, (b) secondary peak, (c) secondary dip, and (d) main dip as a function of coupling power for the D1 line.

Fig. 5.
Fig. 5.

Probe transmission spectrum for the D2 line when the coupling beam is present. Ic=250mW.

Fig. 6.
Fig. 6.

(a) Probe transmission spectrum for Ic=250mW. (b)–(d) EIPR spectra for (b) Ic=280mW (rotation angle is shifted by 40 deg), (c) Ic=125mW (20 deg), and (d) Ic=50mW, as a function of probe detuning frequency for the D2 line, F=2-4D5/2 peak.

Fig. 7.
Fig. 7.

Rotation angles of the (a) main peak, (b) secondary peak, (c) secondary dip, and (d) main dip as a function of coupling power for the D2 line.

Fig. 8.
Fig. 8.

(Top) Couping pulse with 300 ns pulsewidth. (Bottom) Probe pulse reflected by the PBS. The vertical scale of the probe trace is expanded.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

e⃗in=e⃗x=12(e⃗++e⃗),
e⃗out=12(e⃗+eα+L/2+in+kL+e⃗eαL/2+inkL),
I1,2=18I0[eα+L+eαL±2cos(2θ)e(α++α)L/2],
I3,4=18I0[eα+L+eαL±2sin(2θ)e(α++α)L/2].
θ=12tan1(I3I4I1I2).
It=12I0(eα+L+eαL),
Ir=14I0[eα+L+eαL2cos(2θ)e(α++α)L/2)].

Metrics