Abstract

Surface plasmon resonance in super-period metal nanoslits can be observed in the first order diffraction as well in the zeroth order transmission. In this paper, surface plasmon resonance modes in various super-period gold nanoslit arrays are investigated. It is found that the surface plasmon resonance frequencies are determined by the small period of the nanoslits in the super-period nanoslit unit cell. The number of nanoslits in the unit cell and the nanoslit width do not control the surface plasmon resonance frequencies. It is also found that the resonance frequency observed in the first order diffraction reveals more accurately the surface plasmon resonance frequency in the super-period metal nanoslit device.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  2. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
    [CrossRef]
  3. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  4. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
    [CrossRef]
  5. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
    [CrossRef]
  6. S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004).
    [CrossRef]
  7. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
    [CrossRef]
  8. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  9. J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006).
    [CrossRef]
  10. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
    [CrossRef]
  11. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17, 16081–16091 (2009).
    [CrossRef]
  12. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011).
    [CrossRef]
  13. H. Leong and J. Guo, “Surface plasmon resonance in super-periodic metal nanoslits,” Opt. Lett. 36, 4764–4766 (2011).
    [CrossRef]
  14. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  15. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]

2011 (2)

2009 (1)

2008 (1)

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

2006 (1)

2005 (2)

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

2004 (1)

S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004).
[CrossRef]

2003 (2)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

2002 (1)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

2000 (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (1)

1996 (1)

Alù, A.

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Bloemer, M. J.

D’Aguanno, G.

Darmanyan, S. A.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004).
[CrossRef]

de Ceglia, D.

Djurišic, A. B.

Dykhne, M.

M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Elazar, J. M.

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Guo, J.

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Jung, Y. S.

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17, 16081–16091 (2009).
[CrossRef]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

Kaur, P.

Kim, H. K.

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

Leong, H.

Lezec, H. J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Li, L.

Majewski, M. L.

Mattiucci, N.

Möller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Nevière, M.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rakic, A. D.

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Sarychev, A. K.

M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Shalaev, V. M.

M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Sun, Z.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

Vincenti, M. A.

Waldeck, D. H.

Weiner, J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Wuenschell, J.

Zayats, A. V.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (4)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[CrossRef]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit gratings in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70, 075103 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Super-periodic gold nanoslit array with a small period (p) and a large period (P).

Fig. 2.
Fig. 2.

(a) Zeroth order transmission spectra, and (b) first order diffraction spectra from the super-period nanoslit arrays of three different nanoslit small periods but the same slit width (w=140nm); (c) transmittance through regular periodic gold nanoslit arrays with the different small periods of 390 nm, 420 nm, and 450 nm.

Fig. 3.
Fig. 3.

Electric field distributions in the super-period metal nanoslit array in the log scale: (a) Ex component of the electric field at the peak first order diffraction wavelength of 609 nm; (b) Ez component of the electric field at the peak first order diffraction wavelength of 609 nm; (c) Ex component of the electric field at the zeroth order peak transmission wavelength of 612 nm; and (d) Ez component of the electric field at the 612 nm wavelength.

Fig. 4.
Fig. 4.

Electric field distributions in the super-period metal nanoslits array in the log scale: (a) Ex component of the electric field at the wavelength of 762 nm; (b) Ez component of the electric field at the wavelength of 762 nm; (c) Ex component of the electric field at the peak zeroth order transmission wavelength of 764 nm; and (d) Ez component of the electric field at the peak zeroth order transmission wavelength of 764 nm.

Fig. 5.
Fig. 5.

(a) The zeroth order transmission, and (b) the first order diffraction from the super-period gold nanoslits arrays with different nanoslit widths.

Fig. 6.
Fig. 6.

(a) Zeroth order transmission, and (b) first order diffraction of super-period metal nanoslit arrays with different number of nanoslits in the super-period unit cell.

Metrics