Abstract

A technique for measuring the relative phase between optical longitudinal modes in an optical frequency comb (OFC) has been proposed, and applied to the characterization of the OFC. The measurement frequency range was expanded to 2 THz using the OFC of a line spacing of 10 GHz. Furthermore, an algorithm for data analysis was proposed by calculating Fourier transformation of the fragmentized waveform of the data measured by the dual-heterodyne mixing method. As a result, a pulse width of 2.1 ps was observed on a time scale of 100 ps with a resolution of 500 fs, which is inversely proportional to the measured frequency band in general (2 THz in this study). These results were also compared with those obtained from an optical autocorrelator. The measured electric field spectra provide a lot of information, involving a frequency-resolved optical gating (FROG) trace and a phase variation profile plotted against time. Amplitude and phase spectral evolutions were reconstructed directly from the electric field spectra and referred to as a dual-heterodyne mixing trace. In conclusion, it was confirmed that the proposed technique is effective in reading out detailed information from the ultrafast waveform measurement.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femto-second optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [CrossRef]
  2. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code- division multiple access communications systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [CrossRef]
  3. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
    [CrossRef]
  4. H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
    [CrossRef]
  5. D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
    [CrossRef]
  6. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
    [CrossRef]
  7. T. Yamazaki, H. Ono, and T. Shioda, “Novel relative phase detection using dual-heterodyne mixing method and its application to high-speed waveform measurement,” in The 8th Pacific Rim Conference on Lasers and Electro-Optics WE1-4 (IEEE, 2009).
  8. T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipments,” Opt. Commun. 283, 4733–4740 (2010).
    [CrossRef]
  9. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
    [CrossRef]
  10. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617–2626 (2005).
    [CrossRef]
  11. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [CrossRef]
  12. T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” J. Lightwave Technol. 16, 824–832 (1998).
    [CrossRef]

2010

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipments,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

2008

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
[CrossRef]

2006

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

2005

1999

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

1998

1997

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

1995

A. M. Weiner, “Femto-second optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

1994

1990

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code- division multiple access communications systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Aizawa, A.

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

Amano, C.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

DeLong, K. W.

Goh, T.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

Heritage, J. P.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code- division multiple access communications systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Hirano, A.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

Hunter, J.

Iaconis, C.

Inoue, Y.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ishii, M.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ishii, T.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

Kinugawa, S.

Kourogi, M.

Kurokawa, T.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
[CrossRef]

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Mandai, K.

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

Mattori, S.

Miyagi, K.

Miyamoto, D.

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

Naganuma, K.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ohtsu, M.

Okamoto, K.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ono, H.

T. Yamazaki, H. Ono, and T. Shioda, “Novel relative phase detection using dual-heterodyne mixing method and its application to high-speed waveform measurement,” in The 8th Pacific Rim Conference on Lasers and Electro-Optics WE1-4 (IEEE, 2009).

Saitoh, T.

Salehi, J. A.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code- division multiple access communications systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Sato, K.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

Shioda, T.

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipments,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
[CrossRef]

T. Yamazaki, H. Ono, and T. Shioda, “Novel relative phase detection using dual-heterodyne mixing method and its application to high-speed waveform measurement,” in The 8th Pacific Rim Conference on Lasers and Electro-Optics WE1-4 (IEEE, 2009).

Steinmeyer, G.

Stibenz, G.

Takeda, S.

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

Takenouchi, H.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Tanaka, Y.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
[CrossRef]

Taniguchi, A.

Trebino, R.

Tsuda, H.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
[CrossRef]

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Walmsley, I. A.

Weiner, A. M.

A. M. Weiner, “Femto-second optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code- division multiple access communications systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

White, W. E.

Yamazaki, T.

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipments,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

T. Yamazaki, H. Ono, and T. Shioda, “Novel relative phase detection using dual-heterodyne mixing method and its application to high-speed waveform measurement,” in The 8th Pacific Rim Conference on Lasers and Electro-Optics WE1-4 (IEEE, 2009).

Electron. Lett.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using an arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

IEEE J. Lightwave Technol.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” IEEE J. Lightwave Technol. 26, 670–677 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Miyamoto, K. Mandai, A. Aizawa, T. Kurokawa, S. Takeda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[CrossRef]

J. Lightwave Technol.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code- division multiple access communications systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipments,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

A. M. Weiner, “Femto-second optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Other

T. Yamazaki, H. Ono, and T. Shioda, “Novel relative phase detection using dual-heterodyne mixing method and its application to high-speed waveform measurement,” in The 8th Pacific Rim Conference on Lasers and Electro-Optics WE1-4 (IEEE, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of phase measurement operation.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Optical frequency comb spectrum measured using an optical spectrum analyzer (200 GHz resolution). The expanded spectrum was measured with a resolution of 2 GHz.

Fig. 4.
Fig. 4.

Measured spectra of the reference pair (solid) and the incident light to the MZ modulator (broken) are drawn, when the incident light frequency was set at 194.6683 THz.

Fig. 5.
Fig. 5.

(a) Amplitude and (b) phase spectra measured by proposed system, and (c) amplitude and (d) phase spectra simulated.

Fig. 6.
Fig. 6.

Intensity profile obtained by (a) experiment and (b) theoretical calculation.

Fig. 7.
Fig. 7.

Waveform measured using the autocorrelator.

Fig. 8.
Fig. 8.

Dual-heterodyne mixing trace of (a) amplitude and (b) phase spectral evolution.

Fig. 9.
Fig. 9.

Dual-heterodyne mixing traces of (a) expanded amplitude evolution with a locus of the zeniths in spectral sections, and (b) intensity spectral evolution.

Fig. 10.
Fig. 10.

Intensity and phase evolution at a center frequency of 194.6635 THz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V1(t,ϕ,L)=α1cos{2πδft+(ϕ1ϕr)+2πnf1cL1},
V2(t,ϕ,L)=α2cos{2πδft+(ϕ2ϕr)+2πnf2cL2},
VDC(ϕ,L)=Bias.+βcos(Δϕ+2πnΔfcΔL),
E(t)=NaNexp{j(2πfNt+ϕN)}.
Eamp(N)=πϕmE0e|N|πϕmF,ϕ(N)=N(δϕ)(N0),Nπ+N(δϕ)(n<0),

Metrics